Publications by authors named "Pingjuan L Werner"

Vanadate materials such as CaVO3 and SrVO3 were recently proposed as promising alternatives to their conventional transparent conducting oxide counterparts owing to the superior capability for simultaneous realization of high optical transparency and high electrical conductivity originating from strong electron-electron interactions. Here we show that, in addition to their remarkable optoelectronic properties as conducting materials, their incorporation into planar waveguiding configurations could enable outstanding optical performance that is otherwise difficult to achieve with conventional material building blocks, especially metals. Starting from the guided wave at a single CaVO3/dielectric interface, the unique dispersion relationship and propagation property of the fundamental mode are revealed and compared to the conventional surface plasmon polariton associated with a silver/dielectric planar configuration.

View Article and Find Full Text PDF

Reduction of the crosstalk between adjacent photonic components has been regarded as one of the most effective, yet most challenging approaches for increasing the packing density of photonic integrated circuits. Recently, extensive efforts have been devoted to this field, leading to a number of elaborate designs, such as waveguide supperlattice and nanophotonic cloaking, among others. Here we develop a simple and efficient crosstalk reduction approach for silicon-based nanophotonic circuits by introducing a periodic array of silicon strips between adjacent waveguides.

View Article and Find Full Text PDF

The underground-mining environment can affect radio-signal propagation in various ways. Understanding these effects is especially critical in evaluating communications systems used during normal mining operations and during mine emergencies. One of these types of communications systems relies on medium-frequency (MF) radio frequencies.

View Article and Find Full Text PDF

An efficient procedure for modeling medium frequency (MF) communications in coal mines is introduced. In particular, a hybrid approach is formulated and demonstrated utilizing ideal transmission line equations to model MF propagation in combination with full-wave sections used for accurate simulation of local antenna-line coupling and other near-field effects. This work confirms that the hybrid method accurately models signal propagation from a source to a load for various system geometries and material compositions, while significantly reducing computation time.

View Article and Find Full Text PDF

Recent developments in transformation optics have led to burgeoning research on gradient index lenses for novel optical systems. Such lenses hold great potential for the advancement of complex optics for a wide range of applications. Despite the plethora of literature on gradient index lenses, previous works have not yet considered the application of anti-reflective coatings to these systems.

View Article and Find Full Text PDF

The transformation optics technique for designing novel electromagnetic and optical devices offers great control over wave behavior, but is difficult to implement primarily due to limitations in current metamaterial design and fabrication techniques. This paper demonstrates that restricting the spatial transformation to a conformal mapping can lead to much simpler material parameters for more practical implementation. As an example, a flat cylindrical-to-plane-wave conversion lens is presented and its performance validated through numerical simulations.

View Article and Find Full Text PDF

Planar chiral metamaterials comprising double-layer dielectricmetal- dielectric resonant structures in the shape of a gammadion are presented in the near-infrared regime. The unit cell of the doubly-periodic metamaterial design is optimized using the genetic algorithm for maximum circular dichroism and for maximum optical activity. A circular dichroism value in excess of 50% is predicted for the optimized design.

View Article and Find Full Text PDF