In the pursuit of eco-friendly alternatives for refrigeration technology, electrocaloric materials have emerged as promising candidates for efficient solid-state refrigeration due to their high efficiency and integrability. However, current advancements in electrocaloric effects (ECEs) are often constrained by high temperatures and elevated electric fields (-field), limiting practical applicability. Informed by phase-field simulation, this study introduces a (1-)Pb(YbNb)O-Pb(MgNb)O system, strategically engineered to incorporate highly ordered YN and disordered MN mixtures.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs) possess several advantages, such as high conductivity, stable structure, and low cost, making them promising catalysts for carbon dioxide electroreduction. However, the high overpotential and the desorption characteristics of the reaction products during the reduction of carbon dioxide present significant challenges in the field of catalysis. In this study, we have further enhanced the catalytic activity of the original WS structure by constructing a heterojunction.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
The effects of charging on the magnetic anisotropy energy (MAE) of rhenium atom in nitrogenized-divacancy graphene (Re@NDV) are investigated using density functional theory (DFT) calculations. High-stability and large MAE of 71.2 meV are found in Re@NDV.
View Article and Find Full Text PDFThe electrochemical CO reduction reaction (CORR) has become a promising technology to resolve globally accelerating CO emissions and produce chemical fuels. In this work, the electrocatalytic performance of transition metal (TM = Cu, Cr, Mn, Co, Ni, Mo, Pt, Rh, Ru and V) triatomic clusters embedded in a graphdiyne (GDY) monolayer (TM@GDY) for CORR is investigated by density functional theory (DFT) calculations. The results indicate that Cr@GDY possesses the best catalytic performance with a remarkably low rate-limiting step of 0.
View Article and Find Full Text PDF