Publications by authors named "Pingchun Wei"

A facile synthetic strategy towards conformationally stable chiral chromophores based on dimeric porphyrinoids has been established. A peculiar class of face-to-face intramolecularly interlocked corrole dimers were formed by the oxidative C-C coupling linked at the inner carbon sites upon simple treatment of copper(II) ions. Their intrinsic electronic structures were modulated by the peripheral corrole ring annulations, which lead to distinct optical properties and redox profiles.

View Article and Find Full Text PDF

Three kinds of fused porphyrinoids, L2-L4, possessing different types of corrole-based frameworks were synthesized from a pyrrole-substituted corrole isomer (norrole L1). Oxidation of L1 afforded a unique N-Cmeso -fused pyrrolyl isonorrole L2, involving the fusion of an auxiliary pyrrolic NH moiety with a meso-sp(3) -hybridized carbon atom. Subsequently, L2 underwent macrocycle transformations to give singly and doubly N-CAr -fused N-confused corroles, L3 and L4, respectively.

View Article and Find Full Text PDF

A C6F5-substituted hexapyrrane (1) was synthesized in one step. Oxidative cyclization of 1 with DDQ afforded a phlorin-dipyrrin conjugate (2), and subsequent FeCl3-assisted oxidative cleavage of 2 afforded a terminally di-α-methoxy substituted hexapyrrin (3). On the other hand, oxidation of 1 with FeCl3 afforded 3, a hexapyrrinone Fe(3+) complex (4), and a hexaphyrin (1,1,1,1,1,0) (5).

View Article and Find Full Text PDF

Cyclization of a pentapyrrane with two terminal β-linked pyrroles afforded a dihydrosapphyrin isomer (1) with the pyrroles linked in a unique β,α-α,β mode, which was rather reactive, and thus it readily underwent a ring-contracted rearrangement to a pyrrolyl norrole (2), and succeeding ring expansion to a terpyrrole-containing isosmaragdyrin analogue (4). 1, 2, and 4 contain the internal ring pathways with a minimum of 17, 15, and 16 atoms, respectively. 1, 2, and 4 are almost nonfluorescent, whereas the complex of 2 with Zn(2+) shows a distinct NIR emission peak at 741 nm.

View Article and Find Full Text PDF