Publications by authors named "PingAn Yuan Xiang"

Article Synopsis
  • Muskelin (Mkln1) plays a role in brain function by regulating receptor activity on the cell membrane, but its effects on brain activity and behavior are not well understood.
  • A study on mice lacking Mkln1 showed increased movement, heightened exploration, and issues with social recognition, while also improving memory retention and fear response recall.
  • Changes in dendrite structure and synaptic function were observed, indicating that muskelin affects the stability of dendritic spines and glutamatergic signaling, contributing to behavioral changes in Mkln1-deficient mice.
View Article and Find Full Text PDF

Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca-transients are still poorly defined. We show that the postsynaptic Ca sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP).

View Article and Find Full Text PDF

Soluble forms of oligomeric amyloid beta (AβO) are involved in the loss of synaptic plasticity and memory, especially in early phases of Alzheimer's disease. Stimulation of dopamine D1/D5 receptors (D1R/D5R) is known to increase surface expression of synaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate subtype glutamate and N-methyl-D-aspartate subtype glutamate receptors and facilitates the induction of the late phase of long-term potentiation (LTP), probably via a related mechanism. In this study, we show that the D1/D5R agonist SKF38393 protects LTP of hippocampal CA1 synapses from the deleterious action of oligomeric amyloid beta.

View Article and Find Full Text PDF

In previous work, we found that the protein messenger Jacob is involved in N-methyl-D-aspartate receptor (NMDAR) signaling to the nucleus and cAMP response element-binding protein (CREB) mediated gene expression in hippocampal primary neurons. Particularly, extrasynaptic NMDAR activation drives Jacob efficiently into the nucleus where it then induces gene expression that promotes neurodegeneration. However, the protein also translocates to the nucleus in CA1 neurons after Schaffer collateral long-term potentiation (LTP) but not long-term depression (LTD), suggesting that Jacob might be involved in hippocampal and LTP-dependent learning and memory processes.

View Article and Find Full Text PDF