Publications by authors named "PingAn Chang"

Glycosaminoglycans (GAG) are bioactive polysaccharide rich in -SO- and -COO- groups, also known as acidic mucopolysaccharides. In this study, the feasibility of three structurally distinct forms of chondroitin sulfate (CS-A, CS-C, and CS-D) from the GAG family was explored as a potential strategy to enhance industrial α-amylase activity. All three CSs were found to increase α-amylase activity to varying degrees, with CS-D showing the most significant increase, exceeding 78 %.

View Article and Find Full Text PDF

Background: Cellular carcinogenesis is often marked by the accumulation of lipid droplets (LDs) due to reprogrammed lipid metabolism. LDs are dynamic organelles that primarily store intracellular triacylglycerol (TAG) and cholesteryl esters (CEs). Transmembrane protein 68 (TMEM68), a potential modifier of human breast cancer risk and outcomes, functions as a diacylglycerol acyltransferase, synthesizing TAG.

View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) is an age-related syndrome characterized by deficiency of serum testosterone produced by Leydig cells. Previous evidence suggested that microRNA (miR)-361-3p can serve as a promising biomarker for LOH. Nonetheless, its detailed function and molecular mechanism in LOH remain unclarified.

View Article and Find Full Text PDF

The development of resistance to Docetaxel (DTX) compromises its therapeutic efficacy and worsens the prognosis of prostate cancer (PCa), while the underlying regulatory mechanism remains poorly understood. In this study, METTL14 was found to be upregulated in DTX-resistant PCa cells and PCa tissues exhibiting progressive disease during DTX therapy. Furthermore, overexpression of METTL14 promoted the development of resistance to DTX in both in vitro and in vivo.

View Article and Find Full Text PDF

Accumulating evidence has demonstrated the key role of long noncoding (lnc)RNAs in tumorigenesis. Prostate cancer (PCa) is a cancer with high mortality that requires further exploration of the underlying molecular mechanisms. In the present study, we aimed to discover novel potential biomarkers for diagnosing PCa and targeting treatment.

View Article and Find Full Text PDF

Leaf senescence in tobacco is closely related to leaf maturation and secondary metabolites. Bcl-2-associated athanogene (BAG) family members are highly conserved proteins and play key roles in senescence, growth and development, and resistance to biotic and abiotic stresses. Herein, the BAG family of tobacco was identified and characterized.

View Article and Find Full Text PDF

Triacylglycerol (TG) biosynthesis is an important metabolic process for intracellular storage of surplus energy, intestinal dietary fat absorption, attenuation of lipotoxicity, lipid transportation, lactation and signal transduction in mammals. Transmembrane protein 68 (TMEM68) is an endoplasmic reticulum (ER)-anchored acyltransferase family member of unknown function. In the current study we show that overexpression of TMEM68 promotes TG accumulation and lipid droplet (LD) formation in a conserved active sites-dependent manner.

View Article and Find Full Text PDF

Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored.

View Article and Find Full Text PDF

Neuropathy target esterase (NTE) has been proven to act as a lysophospholipase (LysoPLA) and phospholipase B (PLB) in mammalian cells. In this study, we took human neuroblastoma SK-N-SH cells as the research object and explored the effect of NTE on phospholipid homeostasis. The results showed that phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) levels significantly increased (> 40%), while glycerophosphocholine (GPC) decreased (below 60%) after NTE gene was knockdown in the cells (NTE < 30% of control), which were prepared by gene silencing with dsRNA-NTE.

View Article and Find Full Text PDF

The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the stratum corneum and are essential for a vital epidermal permeability barrier. Several enzymes involved in acylceramide synthesis have been demonstrated to be associated with ichthyosis.

View Article and Find Full Text PDF

As an endoplasmic reticulum (ER)-anchored phospholipase, neuropathy target esterase (NTE) catalyzes the deacylation of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). The catalytic domain of NTE (NEST) exhibits comparable activity to NTE and binds to lipid droplets (LD). In the current study, the nucleotide monophosphate (cNMP)-binding domains (CBDs) were firstly demonstrated not to be essential for the ER-targeting of NTE, but to be involved in the normal ER distribution and localization to LD.

View Article and Find Full Text PDF

Background: Phosphatidylethanolamine-binding protein (PEBP) is widely present in animals, plants, and microorganisms. Plant PEBP genes are mainly involved in flowering transition and nutritional growth. These genes have been studied in several plants; however, to the best of our knowledge, no studies have explored them in Brassica juncea var.

View Article and Find Full Text PDF

Background: Exostosin like glycosyltransferase 3 (EXTL3) had been reported to be associated with immune deficiency and play prognostic roles in various cancers. However, little is known about the associations between EXTL3 and prostate cancer (PCa). Hence, this article was designed to clarify their associations.

View Article and Find Full Text PDF

In recent years, increasing evidence shows that circular RNA (circRNA) disorder is closely related to tumorigenesis and cancer progression. However, the regulatory functions of most circRNAs in bladder cancer (BCa) remain unclear. This study was aimed at exploring the molecular regulatory mechanism of circRNAs in BCa.

View Article and Find Full Text PDF

In response to various stimuli, naïve macrophages usually polarize to M1 (classically activated) or M2 (alternatively activated) cells with distinct biological functions. Neuronal nitric oxide synthase (NOS1) is involved in M1 macrophage polarization at an early stage. Here, we show for the first time that NOS1 is dispensable for M2 macrophage polarization for the first time.

View Article and Find Full Text PDF

Background: NAC (NAM, ATAF1/2, and CUC2) transcription factors play an important role in plant growth and development. However, in tumorous stem mustard ( var. ), one of the economically important crops cultivated in southwest China and some southeast Asian countries, reports on the identification of family genes are lacking.

View Article and Find Full Text PDF

Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis.

View Article and Find Full Text PDF

Background: Teosinte branched1//proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in var. tumida, the tumorous stem mustard, has not yet been reported.

View Article and Find Full Text PDF

Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown.

View Article and Find Full Text PDF

This study focuses on the effect of miR-129-5p on docetaxel-resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT-PCR in PCa patient tissues and cell lines including PC-3 and PC-3-DR. Cells transfected with miR-129-5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments.

View Article and Find Full Text PDF

Neuropathy target esterase (NTE) is an endoplasmic reticulum (ER)-localized phospholipase that deacylates phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Loss-of-function mutations in the human NTE gene have been associated with a spectrum of neurodegenerative disorders such as hereditary spastic paraplegia, ataxia and chorioretinal dystrophy. Despite this, little is known about structure-function relationships between NTE protein domains, enzymatic activity and the interaction with cellular organelles.

View Article and Find Full Text PDF

Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism.

View Article and Find Full Text PDF

Acyltransferases catalyze essential reactions in the buildup and remodeling of glycerophospholipids and contribute to the maintenance and diversity of cellular membranes. Transmembrane protein 68 (TMEM68) is an evolutionarily conserved protein of unknown function, that forms a distinct subgroup within the glycerophospholipid acyltransferase family. In the current study we expressed murine TMEM68 for the first time in mammalian cells to characterize its subcellular localization, topology, and possible biological function(s).

View Article and Find Full Text PDF