The spectrum of synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), is characterized by α-synuclein (αSyn) pathology, which serves as the definitive diagnostic marker. However, current diagnostic methods primarily rely on motor symptoms that manifest years after the initial neuropathological changes, thereby delaying potential treatment. The symptomatic overlap between PD and MSA further complicates the diagnosis, highlighting the need for precise and differential diagnostic methods for these overlapping neurodegenerative diseases.
View Article and Find Full Text PDFInjecting α-synuclein pre-formed fibrils (αSyn PFFs) into various tissues and organs involves converting monomeric αSyn into a fibrillar form, inducing extensive αSyn pathology that effectively models Parkinson's disease (PD). However, the distinct physicochemical properties of αSyn amyloid fibrils can potentially reduce their seeding activity, especially during storage. In this study, it is demonstrated that αSyn PFFs exhibit significant sensitivity to low temperatures, with notable denaturation occurring between -20 and 4 °C, and gradual disassembly persisted even under storage conditions at -80 °C.
View Article and Find Full Text PDFBackground: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation.
View Article and Find Full Text PDFThe seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA.
View Article and Find Full Text PDFPain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models.
View Article and Find Full Text PDFThe use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum.
View Article and Find Full Text PDFParkinson's disease (PD) is a multi-system neurodegenerative disorder. Patients with PD often suffer chronic pain. In the present study, we investigated motor, sensory and emotional changes in three different PD mice models.
View Article and Find Full Text PDFParkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Chronic pain is experienced by the vast majority of patients living with Parkinson's disease. The degeneration of dopaminergic neuron acts as the essential mechanism of Parkinson's disease in the midbrain dopaminergic pathway.
View Article and Find Full Text PDFBackground: As the Chinese population continues to age, the incidence of neurodegenerative diseases (NDDs) has increased dramatically, which results in heavy medical and economic burden for families and society.
Objective: The objective of this study was to evaluate NDDs in a southern Chinese hospital over a 10-year period and examine trends in demographics, outcome, length of stay (LOS) and cost.
Methods: Retrospective medical records of patients from January 2010 to December 2019 were collected, including 7231 patients with NDDs (as case group) and 9663 patients without any NDDs (as control group).
Extracellular signal-regulated kinases are widely expressed protein kinases in neurons, which serve as important intracellular signaling molecules for central plasticity such as long-term potentiation. Recent studies demonstrate that there are two major forms of long-term potentiation in cortical areas related to pain: postsynaptic long-term potentiation and presynaptic long-term potentiation. In particular, presynaptic long-term potentiation in the anterior cingulate cortex has been shown to contribute to chronic pain-related anxiety.
View Article and Find Full Text PDFBackground: Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson's disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells.
Methods: In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and .
Background: Proteasome subunits (PSMB) and transporter associated with antigen processing (TAP) loci are located in the human leukocyte antigen (HLA) Class II region play important roles in immune response and protein degradation in neurodegenerative diseases. This study aimed to explore the association between single nucleotide polymorphisms (SNPs) of PSMB and TAP and Parkinson's disease (PD).
Methods: A case-control study was conducted by genotyping SNPs in PSMB8, PSMB9, TAP1, and TAP2 genes in the Chinese population.
Background: Nurr1 plays an essential role in the development, survival, and function maintenance of midbrain dopaminergic (DA) neurons, and it is a potential target for Parkinson's disease (PD). Nurr1 mRNA can be detected in peripheral blood mononuclear cells (PBMCs), but whether there is any association of altered Nurr1 expression in PBMC with the disease and DA drug treatments remains elusive. This study aimed to measure the Nurr1 mRNA level in PBMC and evaluate the effect of Nurr1 expression by DA agents in vivo and in vitro.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
April 2016
Our aim is to explore the linkage between single nucleotide polymorphisms (SNPs) in human leukocyte antigen (HLA)-DRA and Parkinson's disease (PD). 542 sporadic PD patients and 674 healthy controls were recruited to investigate this association in the Chinese population by the screening of 15 SNPs in HLA-DRA, and the association of rs3129882 was further re-evaluated by performing meta-analysis and meta-regression analysis. No SNPs in HLA-DRA were significantly associated with PD in the Chinese patients.
View Article and Find Full Text PDFBackground: Uric acid (UA) is suspected to play a neuro-protective role in Parkinson's disease (PD). This study aimed to evaluate whether the serum UA level was associated with the disease progression of PD in a relatively large population of Chinese patients.
Methods: Serum UA levels were measured from 411 Chinese PD patients and 396 age-matched controls; following the uric acid colorimetric method, the serum creatinine (Scr) levels were also measured to reduce the bias caused by possible differences in renal excretion function.
Aim: To characterize the matrix metalloproteinases (MMP)-2 promoter and to identify androgen response elements (AREs) involved in androgen-induced MMP-2 expression.
Methods: MMP-2 mRNA levels was determined by reverse transcription-polymerase chain reaction (RT-PCR). MMP-2 promoter-driven luciferase assays were used to determine the fragments responsible for androgen-induced activity.
Background: Nurr1 is a member of the nuclear receptor superfamily of transcription factors. The objective of the present study was to identify novel splicing variants of the gene in neuronal and non-neuronal tissues and determine their functions.
Methods: Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to screen for Nurr1 splice variants in the adult human central nervous system (CNS) and in other tissues such as lymphocytes, and liver, muscle, and kidney cells.