Background: The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S.
View Article and Find Full Text PDFThis study encompassed the lab-scale fermentation of cocoa beans in 300-g heaps under controlled laboratory conditions, in order to replicate the microbial dynamics and metabolomic changes that usually occur in large-scale spontaneous fermentations. Growth profiles of yeast and acetic acid bacteria (AAB) with the native assortment of microbes as well as with the use of a starter culture were very similar to those observed in literature. Greater production of acetic acid by AAB not only led to more acidic-tasting liquor but also contributed to bitterness, due to polyphenol preservation.
View Article and Find Full Text PDFGlycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source.
View Article and Find Full Text PDFBackground: Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance.
Results: By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele.
Background: Glycerol is an abundant by-product of biodiesel production and has several advantages as a substrate in biotechnological applications. Unfortunately, the popular production host can barely metabolize glycerol by nature.
Results: In this study, two evolved derivatives of the strain CEN.
The yeast Saccharomyces cerevisiae generally shows a low natural capability to utilize glycerol as the sole source of carbon, particularly when synthetic medium is used and complex supplements are omitted. Nevertheless, wild type isolates have been identified that show a moderate growth under these conditions. In the current study we made use of intraspecies diversity to identify targets suitable for reverse metabolic engineering of the non-growing laboratory strain CEN.
View Article and Find Full Text PDF