Publications by authors named "Ping-Keng Jao"

In search and rescue missions, drone operations are challenging and cognitively demanding. High levels of cognitive workload can affect rescuers' performance, leading to failure with catastrophic outcomes. To face this problem, we propose a machine learning algorithm for real-time cognitive workload monitoring to understand if a search and rescue operator has to be replaced or if more resources are required.

View Article and Find Full Text PDF

Practical brain-computer interfaces need to overcome several challenges, including tolerance to signal variability within- and across sessions. We introduce Robust Principal Component Analysis (RPCA) as a potential approach to tackle intra-trial variability. Assuming that subjects undergo the same cognitive process or perform the same task in a short period (e.

View Article and Find Full Text PDF

Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG) signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecological challenge that the EEG patterns recorded in real life substantially change across days (i.e.

View Article and Find Full Text PDF

An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects.

View Article and Find Full Text PDF