Publications by authors named "Ping Yong"

While animals across species typically experience suppressed consciousness and an increased arousal threshold during sleep, the responsiveness to specific sensory inputs persists. Previous studies have demonstrated that rhythmic and continuous vibration can enhance sleep in both animals and humans. However, the neural circuits underlying vibration-induced sleep (VIS) and its potential therapeutic benefits on neuropathological processes in disease models remain unclear.

View Article and Find Full Text PDF

While a hippocampal-cortical dialogue is generally thought to mediate memory consolidation, which is crucial for engram function, how it works remains largely unknown. Here, we examined the interplay of neural signals from the retrosplenial cortex (RSC), a neocortical region, and from the hippocampus in memory consolidation by simultaneously recording sharp-wave ripples (SWRs) of dorsal hippocampal CA1 and neural signals of RSC in free-moving mice during the delayed spatial alternation task (DSAT) and subsequent sleep. Hippocampal-RSC coordination during SWRs was identified in nonrapid eye movement (NREM) sleep, reflecting neural reactivation of decision-making in the task, as shown by a peak reactivation strength within SWRs.

View Article and Find Full Text PDF

Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms.

View Article and Find Full Text PDF

Analyzing neuronal activities is essential to deciphering the function of neural circuits. In anesthetized rodents, simultaneous multisite recording of extracellular electrophysiological activity with defined electrical stimulation is a powerful tool to dissect reciprocal relationships between brain structures. Here, we present a protocol to simultaneously record from the subthalamic nucleus and substantia nigra pars reticulata while stimulating the pedunculopontine tegmental nucleus in anesthetized rats.

View Article and Find Full Text PDF

Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days.

View Article and Find Full Text PDF

Loss of fragile X messenger ribonucleoprotein (FMRP) causes fragile X syndrome (FXS), the most prevalent form of inherited intellectual disability. Here, we show that FMRP interacts with the voltage-dependent anion channel (VDAC) to regulate the formation and function of endoplasmic reticulum (ER)-mitochondria contact sites (ERMCSs), structures that are critical for mitochondrial calcium (mito-Ca) homeostasis. FMRP-deficient cells feature excessive ERMCS formation and ER-to-mitochondria Ca transfer.

View Article and Find Full Text PDF

Background: Hepatic portal vein collateral circulation plays an important role in maintaining the perfusion of hepatic portal vein. However, at present, there is little research on collateral circulation of hepatic portal vein. Our study aims to analysis the imaging types and clinical value of hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) invading and completely blocking different branches of portal vein, secondary to hepatic portal vein collateral circulation.

View Article and Find Full Text PDF

Background: Pancreatic adenocarcinoma (PAAD) is a highly aggressive and malignant cancer type with the highest mortality rate of all major cancers. However, the molecular and tumor immune escape mechanism underlying pancreatic cancer remains largely unclear. α-enolase (ENO1) is a glycolytic enzyme reported to overexpress in a variety of cancer types.

View Article and Find Full Text PDF

α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten "hallmarks of cancer." ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis.

View Article and Find Full Text PDF

Evidence suggests that impaired synaptic and firing homeostasis represents a driving force of early Alzheimer's disease (AD) progression. Here, we examine synaptic and sleep homeostasis in a Drosophila model by overexpressing human amyloid precursor protein (APP), whose duplication and mutations cause familial early-onset AD. We find that APP overexpression induces synaptic hyperexcitability.

View Article and Find Full Text PDF

, encoding a member of the teneurin protein family, is a risk gene shared by many types of mental diseases and is implicated in neuronal plasticity and signaling. However, the role and the mechanisms of in schizophrenia (SCZ) remain unclear. We identified possible pathogenic mutations in the gene through target sequencing of in 68 SCZ families.

View Article and Find Full Text PDF

ABSTRATCIn recent years, emerging studies have observed gut microbiota (GM) alterations in Alzheimer's disease (AD), even in individuals with mild cognitive impairment (MCI). Further, impaired sleep and circadian patterns are common symptoms of AD, while sleep and circadian rhythm disruption (SCRD) is associated with greater β-amyloid (Aβ) burden and AD risk, sometimes years before the clinical onset of AD. Moreover, reports have demonstrated that GM and its metabolites exhibit diurnal rhythmicity and the role of SCRD in dampening the GM rhythmicity and eubiosis.

View Article and Find Full Text PDF

Objective: To explore the effect of bone cement distribution, cement leakage, and clinical outcomes with side-opening cannula for bone cement injection in percutaneous vertebroplasty (PVP) in treatment of Kummell disease.

Methods: A prospective study of patients with Kummell disease undergoing PVP was conducted from April 2012 to September 2017. In total, 43 patients (11 males, 32 females) with Kummell disease who received bilateral PVP were included in the study.

View Article and Find Full Text PDF

Circadian patterns of locomotor activity are influenced by social interactions. Studies on insects highlight the importance of volatile odors and the olfactory system. Wild-type Drosophila exhibit immediate re-entrainment to new light:dark (LD) cycles, whereas cry and jet mutants show deficits in re-entrainability.

View Article and Find Full Text PDF

Sleep is highly conserved across animal species. Both wake- and sleep-promoting neurons are implicated in the regulation of wake-sleep transition at dusk in However, little is known about how they cooperate and whether they act via different mechanisms. Here, we demonstrated that in female , sleep onset was specifically delayed by blocking the Shaker cognate L channels [Shal; also known as voltage-gated K channel 4 (K4)] in wake-promoting cells, including large ventral lateral neurons (l-LNvs) and pars intercerebralis (PI), but not in sleep-promoting dorsal neurons (DN1s).

View Article and Find Full Text PDF

Regulating the air in low-oxygen environments protects hermetically stored grains from storage pests damage. However, pests that can tolerate hypoxic stress pose a huge challenge in terms of grain storage. We used various biological approaches to determine the fundamental mechanisms of Tribolium castaneum to cope with hypoxia.

View Article and Find Full Text PDF

In order to ameliorate the properties of corrosion resistance and achieve applications in anti-biofouling of 316L stainless steel (SS), a sulfated derivative of chitosan was deposited onto stainless steel surface by an electrochemical method. In detail, chitosan-catechol (CS-CT) was synthesised in the hydrochloric acid solution by the Mannich reaction and then electrodeposited on the surface of the polished 316L stainless steel. The chitosan-catechol deposited SS sample was further modified with maleic anhydride and sulfite.

View Article and Find Full Text PDF

Study Objectives: The correlated activation of pre- and postsynaptic neurons is essential for the NMDA receptor-mediated Ca2+ influx by removing Mg2+ from block site and NMDA receptors have been implicated in phase resetting of circadian clocks. So we assessed rest:activity rhythms in Mg2+ block defective animals.

Methods: Using Drosophila locomotor monitoring system, we checked circadian rest:activity rhythms of different mutants under constant darkness (DD) and light:dark (LD) conditions.

View Article and Find Full Text PDF

Accumulation of amyloid-β (Aβ) is widely believed to be an early event in the pathogenesis of Alzheimer's disease (AD). K4 is an A-type K channel, and our previous report shows the degradation of K4, induced by the Aβ42 accumulation, may be a critical contributor to the hyperexcitability of neurons in a Drosophila AD model. Here, we used well-established courtship memory assay to investigate the contribution of the K4 channel to short-term memory (STM) deficits in the Aβ42-expressing AD model.

View Article and Find Full Text PDF

Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. β-amyloid (Aβ) accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients.

View Article and Find Full Text PDF

Synaptic homeostasis is a form of neuronal plasticity that stabilizes activity of neural networks. Both presynaptic and postsynaptic effects are well documented in response to activity changes. The electrical signaling machinery of individual neurons, or intrinsic properties, have also been implicated in this plasticity.

View Article and Find Full Text PDF

Long-term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity.

View Article and Find Full Text PDF

Background: Rhythmic behaviors, such as walking and breathing, involve the coordinated activity of central pattern generators in the CNS, sensory feedback from the PNS, to motoneuron output to muscles. Unraveling the intrinsic electrical properties of these cellular components is essential to understanding this coordinated activity. Here, we examine the significance of the transient A-type K(+) current (I(A)), encoded by the highly conserved Shal/K(v)4 gene, in neuronal firing patterns and repetitive behaviors.

View Article and Find Full Text PDF