Identifying the potential side effects for the interested drugs can help reduce harm to patients caused by drugs in clinical use and decrease the risk of drug development failure. Multiple functionally similar drugs often have multiple similar side effects, resulting in the closed relationships among these nodes. However, most of previous methods did not completely encode the features from the biological perspective to mine the complex associations between the drugs and side effects.
View Article and Find Full Text PDFIdentifying drug-related microbes may help us explore how the microbes affect the functions of drugs by promoting or inhibiting their effects. Most previous methods for the prediction of microbe-drug associations focused on integrating the attributes and topologies of microbe and drug nodes in Euclidean space. The heterogeneous network composed of microbes and drugs has a hierarchical structure, and the hyperbolic space is helpful for reflecting the structure.
View Article and Find Full Text PDFIdentifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes.
View Article and Find Full Text PDFGraph convolutional neural networks (GCN) have shown the promise in medical image segmentation due to the flexibility of representing diverse range of image regions using graph nodes and propagating knowledge via graph edges. However, existing methods did not fully exploit the various attributes of image nodes and the context relationship among their attributes. We propose a new segmentation method with multi-similarity view enhancement and node attribute context learning (MNSeg).
View Article and Find Full Text PDFIdentifying the side effects related to drugs is beneficial for reducing the risk of drug development failure and saving the drug development cost. We proposed a graph reasoning method, RKDSP, to fuse the semantics of multiple connection relationships, the local knowledge within each meta-path, the global knowledge among multiple meta-paths, and the attributes of the drug and side effect node pairs. We constructed drug-side effect heterogeneous graphs consisting of the drugs, side effects, and their similarity and association connections.
View Article and Find Full Text PDFDysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes.
View Article and Find Full Text PDFMotivation: Understanding the intermolecular interactions of ligand-target pairs is key to guiding the optimization of drug research on cancers, which can greatly mitigate overburden workloads for wet labs. Several improved computational methods have been introduced and exhibit promising performance for these identification tasks, but some pitfalls restrict their practical applications: (i) first, existing methods do not sufficiently consider how multigranular molecule representations influence interaction patterns between proteins and compounds; and (ii) second, existing methods seldom explicitly model the binding sites when an interaction occurs to enable better prediction and interpretation, which may lead to unexpected obstacles to biological researchers.
Results: To address these issues, we here present DrugMGR, a deep multigranular drug representation model capable of predicting binding affinities and regions for each ligand-target pair.
As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically.
View Article and Find Full Text PDFThe accurate automatic segmentation of tumors from computed tomography (CT) volumes facilitates early diagnosis and treatment of patients. A significant challenge in tumor segmentation is the integration of the spatial correlations among multiple parts of a CT volume and the context relationship across multiple channels.We proposed a mutually enhanced multi-view information model (MEMI) to propagate and fuse the spatial correlations and the context relationship and then apply it to lung tumor CT segmentation.
View Article and Find Full Text PDFInferring the latent disease-related miRNAs is helpful for providing a deep insight into observing the disease pathogenesis. We propose a method, CMMDA, to encode and integrate the context relationship among multiple heterogeneous networks, the complementary information across these networks, and the pairwise multimodal attributes. We first established multiple heterogeneous networks according to the diverse disease similarities.
View Article and Find Full Text PDFMotivation: Accurate identification of target proteins that interact with drugs is a vital step , which can significantly foster the development of drug repurposing and drug discovery. In recent years, numerous deep learning-based methods have been introduced to treat drug-target interaction (DTI) prediction as a classification task. The output of this task is binary identification suggesting the absence or presence of interactions.
View Article and Find Full Text PDFMotivation: The human microbiome may impact the effectiveness of drugs by modulating their activities and toxicities. Predicting candidate microbes for drugs can facilitate the exploration of the therapeutic effects of drugs. Most recent methods concentrate on constructing of the prediction models based on graph reasoning.
View Article and Find Full Text PDFAn increasing number of studies have shown that dysregulation of lncRNAs is related to the occurrence of various diseases. Most of the previous methods, however, are designed based on homogeneity assumption that the representation of a target lncRNA (or disease) node should be updated by aggregating the attributes of its neighbor nodes. However, the assumption ignores the affinity nodes that are far from the target node.
View Article and Find Full Text PDFInt J Retina Vitreous
October 2023
Background: Optical coherence tomography (OCT) is the most important and commonly utilized imaging modality in ophthalmology and is especially crucial for the diagnosis and management of macular diseases. Each OCT volume is typically only available as a series of cross-sectional images (B-scans) that are accessible through proprietary software programs which accompany the OCT machines. To maximize the potential of OCT imaging for machine learning purposes, each OCT image should be analyzed en bloc as a 3D volume, which requires aligning all the cross-sectional images within a particular volume.
View Article and Find Full Text PDFSince side-effects of drugs are one of the primary reasons for their failure in clinical trials, predicting their side-effects can help reduce drug development costs. We proposed a method based on heterogeneous graph transformer and capsule networks for side-effect-drug-association prediction (TCSD). The method encodes and integrates attributes from multiple types of neighbor nodes, connection semantics, and multi-view pairwise information.
View Article and Find Full Text PDFInferring drug-related side effects is beneficial for reducing drug development cost and time. Current computational prediction methods have concentrated on graph reasoning over heterogeneous graphs comprising the drug and side effect nodes. However, the various topologies and node attributes within multiple drug-side effect heterogeneous graphs have not been completely exploited.
View Article and Find Full Text PDFMXene/graphene oxide composites with strong interfacial interactions were constructed by ball milling in vacuum. Graphene oxide (GO) acted as a bridge between TiCT nanosheets in the composite material, which could buffer the mechanical shear force during the ball milling process, avoid the structural damage of nanosheets and improve the structural stability of the composite material during the lithium process. Partial oxidation of TiCT nanosheets is caused by high temperatures during ball milling, which is beneficial to improve the intercalation of lithium ions in the material, reduce the stress and electrostatic repulsion between adjacent layers, and cause the composite to have better lithium storage performance.
View Article and Find Full Text PDFPredicting disease-related candidate long noncoding RNAs (lncRNAs) is beneficial for exploring disease pathogenesis due to the close relations between lncRNAs and the occurrence and development of human diseases. It is a long-term and challenging task to adequately extract specific and local topologies in individual lncRNA network and individual disease network, and integrate the information of the connection relationships. We propose a new graph learning-based prediction method to encode specific and local topologies from each individual network, neighbor topologies with different connection relationships, and pairwise attributes.
View Article and Find Full Text PDFThe domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision.
View Article and Find Full Text PDFAccurate and automated segmentation of lung tumors from computed tomography (CT) images is critical yet challenging. Lung tumors are of various sizes and locations and have indistinct boundaries adjacent to other normal tissues.We propose a new segmentation model that can integrate the topological structure and global features of image region nodes to address the challenges.
View Article and Find Full Text PDFEffective learning and modelling of spatial and semantic relations between image regions in various ranges are critical yet challenging in image segmentation tasks.We propose a novel deep graph reasoning model to learn from multi-order neighborhood topologies for volumetric image segmentation. A graph is first constructed with nodes representing image regions and graph topology to derive spatial dependencies and semantic connections across image regions.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2022
Background And Objective: Accurate lung tumor segmentation from computed tomography (CT) is complex due to variations in tumor sizes, shapes, patterns and growing locations. Learning semantic and spatial relations between different feature channels, image regions and positions is critical yet challenging.
Methods: We propose a new segmentation method, PRCS, by learning and integrating multi-channel contextual relations, and spatial and position dependencies across image regions.
IEEE/ACM Trans Comput Biol Bioinform
April 2023
Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected.
View Article and Find Full Text PDFMotivation: Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of diseases. Predicting disease-related lncRNAs can help to understand the pathogenesis of diseases deeply. The existing methods mainly rely on multi-source data related to lncRNAs and diseases when predicting the associations between lncRNAs and diseases.
View Article and Find Full Text PDF