Publications by authors named "Ping L Yeap"

Background And Purpose: Despite the superior dose conformity of proton therapy, the dose distribution is sensitive to daily anatomical changes, which can affect treatment accuracy. This study evaluated the dose recalculation accuracy of two synthetic computed tomography (sCT) generation algorithms in a commercial treatment planning system.

Materials And Methods: The evaluation was conducted for head-and-neck, thorax-and-abdomen, and pelvis sites treated with proton therapy.

View Article and Find Full Text PDF

Purpose: A daily quality assurance (QA) check in proton therapy is ensuring that the range of each proton beam energy in water is accurate to 1 mm. This is important for ensuring that the tumor is adequately irradiated while minimizing damage to surrounding healthy tissue. It is also important to verify the total charge collected against the beam model.

View Article and Find Full Text PDF

The validation of deformable image registration (DIR) for contour propagation is often done using contour-based metrics. Meanwhile, dose accumulation requires evaluation of voxel mapping accuracy, which might not be accurately represented by contour-based metrics. By fabricating a deformable anthropomorphic pelvis phantom, we aim to (1) quantify the voxel mapping accuracy for various deformation scenarios, in high- and low-contrast regions, and (2) identify any correlation between dice similarity coefficient (DSC), a commonly used contour-based metric, and the voxel mapping accuracy for each organ.

View Article and Find Full Text PDF

Introduction: Real-time gated proton therapy (RGPT) is a motion management technique unique to the Hitachi particle therapy system. It uses pulsed fluoroscopy to track an implanted fiducial marker. There are currently no published guidelines on how to conduct the commissioning and quality assurance.

View Article and Find Full Text PDF

Introduction: Daily quality assurance is an integral part of a radiotherapy workflow to ensure the dose is delivered safely and accurately to the patient. It is performed before the first treatment of the day and needs to be time and cost efficient for a multiple gantries proton center. In this study, we introduced an efficient method to perform QA for output constancy, range verification, spot positioning accuracy and imaging and proton beam isocenter coincidence with DailyQA3.

View Article and Find Full Text PDF

Background And Purpose: This work introduces the first assessment of CT calibration following the ESTRO's consensus guidelines and validating the HLUT through the irradiation of biological material.

Methods: Two electron density phantoms were scanned with two CT scanners using two CT scan energies. The stopping power ratio (SPR) and mass density (MD) HLUTs for different CT scan energies were derived using Schneider's and ESTRO's methods.

View Article and Find Full Text PDF

Background And Purpose: High-density dental fillings pose a non-negligible impact on head and neck cancer treatment. For proton therapy, stopping power ratio (SPR) prediction will be significantly impaired by the associated image artifacts. Dose perturbation is also inevitable, compromising the treatment plan quality.

View Article and Find Full Text PDF

. Dispersion in an accelerator quantifies the deviation of the proton trajectory when there is a momentum deviation. We present for the first time a safe method of measuring dispersion in the clinic, using a scintillator detector and the momentum deviations within a spill.

View Article and Find Full Text PDF

Background: Tolerance limit is defined on pre-treatment patient specific quality assurance results to identify "out of the norm" dose discrepancy in plan. An out-of-tolerance plan during measurement can often cause treatment delays especially if replanning is required. In this study, we aim to develop an outlier detection model to identify out-of-tolerance plan early during treatment planning phase to mitigate the above-mentioned risks.

View Article and Find Full Text PDF

. Automatic deformable image registration (DIR) is a critical step in adaptive radiotherapy. Manually delineated organs-at-risk (OARs) contours on planning CT (pCT) scans are deformably registered onto daily cone-beam CT (CBCT) scans for delivered dose accumulation.

View Article and Find Full Text PDF

The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.

View Article and Find Full Text PDF