Publications by authors named "Ping Kao"

Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues.

View Article and Find Full Text PDF

Expansion microscopy (ExM) improves image resolution of specimens without requirements of sophisticated techniques or equipment. Probes or proteins are anchored onto an acrylamide gel matrix which is then expanded with osmotic pressure. As the physical distance between two signal points increases, previously confounded signals can be resolved while their relative spatial locations are retained.

View Article and Find Full Text PDF

Background: Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression.

View Article and Find Full Text PDF

Exon junction complexes (EJCs) are deposited on mRNAs during splicing and displaced by ribosomes during the pioneer round of translation. Nonsense-mediated mRNA decay (NMD) degrades EJC-bound mRNA, but the lack of suitable methodology has prevented the identification of other degradation pathways. Here, we show that the RNA degradomes of Arabidopsis (), rice (), worm (), and human () cells exhibit an enrichment of 5' monophosphate (5'P) ends of degradation intermediates that map to the canonical EJC region.

View Article and Find Full Text PDF

Genome-wide characterization of RNA populations in early flowering plant embryos can yield insights into the gene regulatory processes functioning during this formative phase of development. However, early embryonic transcriptomes are technically challenging to profile because of the low amount of RNA obtainable and potential RNA contamination from surrounding nonembryonic tissues. Here we provide a detailed protocol for collecting early Arabidopsis thaliana (Arabidopsis) embryos, generating mRNA sequencing (mRNA-seq) libraries, and basic data processing and quality controls of the resulting mRNA-seq data.

View Article and Find Full Text PDF

Commonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold-thiolate anchor and the nitrile tail groups located at the SAM-ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses a novel thermal sensor array made from micromachined Y-cut quartz resonators, designed for sensitive biosensing applications within a separated reaction chamber.
  • The sensor is robust, maintaining performance without surface fouling, and uses impedance tracking to measure chemical and enzymatic reactions, achieving high sensitivity in frequency and impedance changes.
  • Results include improved glucose detection limits and successful measurement of cellular activity in pancreatic cancer cells, showcasing the sensor's effectiveness in complex biochemical environments.
View Article and Find Full Text PDF

The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g.

View Article and Find Full Text PDF

We have designed and fabricated 25-microm-thick quartz resonators operating at a fundamental resonance frequency of approximately 62 MHz. The results show a substantial increase in the mass sensitivity compared to single monolithic commercial resonators operating at lower frequencies in the approximately 5-10-MHz range. The overall performance of the micromachined resonators is demonstrated for the example of human serum albumin protein adsorption from aqueous buffer solutions onto gold electrodes functionalized with self-assembled monolayers.

View Article and Find Full Text PDF