Recent studies highlight the importance of baseline functional immunity for immune checkpoint blockade therapies. High-dimensional systemic immune profiling is performed in a cohort of non-small-cell lung cancer patients undergoing PD-L1/PD-1 blockade immunotherapy. Responders show high baseline myeloid phenotypic diversity in peripheral blood.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is a leading cause of cancer death. Tumor progression depends on interactions of cancer cells with the tumor microenvironment. Here, we find increased copy number and mRNA expression of the catalytic subunit of telomerase, TERT, in tumors from NSCLC patients, contributing to a lower survival.
View Article and Find Full Text PDFImmunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate.
View Article and Find Full Text PDFPD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2022
Objective: We aimed to investigate the short and long-term metabolic consequences of IGF1R systemic gene deficiency in mice.
Methods: mutant mice were used to suppress IGF1R signaling in adult tissues by inducing postnatal generalized deletion with tamoxifen. Animals were analyzed at two different ages: ) 13-weeks old young mice, and ) 12-months old middle-aged mice.
TRF1 is an essential component of the telomeric protective complex or shelterin. We previously showed that dysfunctional telomeres in alveolar type II (ATII) cells lead to interstitial lung fibrosis. Here, we study the lung pathologies upon telomere dysfunction in fibroblasts, club and basal cells.
View Article and Find Full Text PDFIt is unclear whether patients with cancer present inherently impaired responses to COVID-19 and vaccination due to their treatments, neoplastic diseases or both. To address this question, immune profiling was performed in three cohorts of healthy donors and oncologic patients: infected with SARS-CoV-2, BNT162b2-vaccinated, and with previous COVID-19 disease and subsequently vaccinated. Cancer patients showed good antibody responses to vaccination, but poor induction of T-cell responses towards the S protein when compared to infection.
View Article and Find Full Text PDFVaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor.
View Article and Find Full Text PDFThe number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence.
View Article and Find Full Text PDFSingle-agent immunotherapy has been widely accepted as frontline treatment for advanced non-small cell lung cancer (NSCLC) with high tumor PD-L1 expression, but most patients do not respond and the mechanisms of resistance are not well known. Several works have highlighted the immunosuppressive activities of myeloid subpopulations, including low-density neutrophils (LDNs), although the context in which these cells play their role is not well defined. We prospectively monitored LDNs in peripheral blood from patients with NSCLC treated with anti-PD-1 immune checkpoint inhibitors (ICIs) as frontline therapy, in a cohort of patients treated with anti-PD1 immunotherapy combined with chemotherapy (CT+IT), and correlated values with outcomes.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs.
View Article and Find Full Text PDFGiven the long-term ineffectiveness of current therapies and late-stage diagnoses, lung cancer is a leading cause of malignant diseases. Tumor progression is influenced by cancer cell interactions with the tumor microenvironment (TME). Insulin-like growth factor 1 receptor (IGF1R) was reported to affect the TME; however, the role of IGF1R in lung TME has not been investigated.
View Article and Find Full Text PDFAdoptive cell therapy with genetically modified T lymphocytes that express chimeric antigen receptors (CAR-T) is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in hematological malignancies. However, the efficacy of CAR-T cells in solid tumors is still very unsatisfactory, because of the strong immunosuppressive tumor microenvironment that hinders immune responses. The development of next-generation personalized CAR-T cells against solid tumors is a clinical necessity.
View Article and Find Full Text PDFThe BRAF gene is frequently mutated in cancer. The most common genetic mutation is a single nucleotide transition which gives rise to a constitutively active BRAF kinase (BRAF) which in turn sustains continuous cell proliferation. The study of BRAF murine models has been mainly focused on the role of BRAF in tumor development but little is known on the early molecular impact of BRAF expression in vivo.
View Article and Find Full Text PDFBackground: Asthma is a chronic lung disease characterized by reversible airflow obstruction, airway hyperresponsiveness (AHR), mucus overproduction and inflammation. Although Insulin-like growth factor 1 receptor (IGF1R) was found to be involved in asthma, its pharmacological inhibition has not previously been investigated in this pathology. We aimed to determine if therapeutic targeting of IGF1R ameliorates allergic airway inflammation in a murine model of asthma.
View Article and Find Full Text PDFAsthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well-established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild-type and telomerase-deficient mice with short telomeres (third-generation (G3 Tert mice)) were challenged with intranasal house dust mite (HDM) extract.
View Article and Find Full Text PDFInsulin-like growth factor 1 receptor (IGF1R)-mediated signaling pathways modulate important neurophysiological aspects in the central nervous system, including neurogenesis, synaptic plasticity and complex cognitive functions. In the present study, we intended to characterize the impact of IGF1R deficiency in the brain, focusing on PI3K/Akt and MAPK/ERK1/2 signaling pathways and mitochondria-related parameters. For this purpose, we used 13-week-old ; male mice in which was conditionally deleted.
View Article and Find Full Text PDFShort/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology.
View Article and Find Full Text PDFTwo series of neutral luminescent pentafluorophenyl cycloplatinated(II) complexes [Pt(C^N)(CF)L] [C^N = C-deprotonated 2-phenylpyridine (ppy; a), 2-(2,4-difluorophenylpyridine (dfppy; b)] incorporating dimethyl sulfoxide [L = DMSO for 1 (1a reported by us in ref (14) )] or biocompatible phosphine [L = PPhCHCOOH (dpbH; 2), PPhCHCONHCHCOOMe (dpbGlyOMe; 3), P(CHSONa) (TPPTS; 4)] ligands have been prepared and characterized and their optical properties studied. Their cytotoxic activities against tumor A549 (lung carcinoma), HeLa (cervix carcinoma), and nontumor NL-20 (lung epithelium) cell lines, as well as the ability to interact with DNA (plasmid pBR322), were evaluated. Complexes 2 exhibit higher cytotoxicity (IC 3.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
July 2018
The profile of activation of lipid mediator (LM) pathways in asthmatic airway inflammation remains unclear. This experimental study quantified metabolite levels of ω3-, ω6- and ω9-derived polyunsaturated fatty acids in bronchoalveolar lavage fluid (BALF) after 4-weeks of repeated house dust mite (HDM) exposure in a murine (C57BL/6) asthma model. The challenge induced airway hyperresponsiveness, pulmonary eosinophil infiltration, but with low and unchanged mast cell numbers.
View Article and Find Full Text PDFAsthma is a chronic inflammatory disease characterized by bronchial hyperresponsiveness, mucus overproduction and airway remodeling. Notably, we have recently demonstrated that insulin-like growth factor 1 receptor (IGF1R) deficiency in mice attenuates airway hyperresponsiveness and mucus secretion after chronic house dust mite (HDM) exposure. On this basis, inbred C57BL/6 and Igf1r-deficient mice were given HDM extract to study the acute inflammatory profile and implication of Igf1r in acute asthma pathobiology.
View Article and Find Full Text PDFCycloplatinated complexes based on 2-(4-substituted)benzothiazole ligands of type [Pt(R-PBT-κC,N)Cl(L)] (PBT=2-phenylbenzothiazole; R=Br (1), Me N (2); L=dimethyl sulfoxide (DMSO; a), 1,3,5- triaza-7-phosphaadamantane (PTA; b), triphenylphosphine 3,3',3''-trisulfonate (TPPTS; c)) and [Pt(Br-PBT-κC)Cl(PTA) ] (3) are presented. On the basis of the photophysical data and time-dependent (TD)-DFT calculations (1 a and 2 a), the low-lying transitions (absorption and emission) were associated with ligand-center (LC) charge transfer, with minor metal-to-ligand charge transfer (MLCT), and intraligand charge transfer (ILCT) [Me N-PBT→PBT] excited states, respectively. Simultaneous fluorescence/phosphorescence bands were found in fluid solutions (and also in the solid state for 2 a), which become dominated by triplet emission bands in rigid media at 77 K.
View Article and Find Full Text PDFIGF1R (Insulin-like Growth Factor 1 Receptor) is a tyrosine kinase with pleiotropic cellular functions. IGF activity maintains human lung homeostasis and is implicated in pulmonary diseases such as cancer, ARDS, COPD, asthma and fibrosis. Here we report that lung transcriptome analysis in mice with a postnatally-induced Igf1r gene deletion showed differentially expressed genes with potentially protective roles related to epigenetics, redox and oxidative stress.
View Article and Find Full Text PDF