Publications by authors named "Pinches R"

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA.

View Article and Find Full Text PDF

To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care.

View Article and Find Full Text PDF

Background/objectives: The diagnostic distinction between atypical Spitz tumor (AST) and malignant melanoma (MM) in pediatric tumors is challenging. Molecular tests are increasingly used to characterize these neoplasms; however, limited studies are available in pediatric patients. This study aimed to provide a genomic comparison of pediatric MM and AST in the context of comprehensive clinical annotation.

View Article and Find Full Text PDF

Alterations in the BCOR gene, including internal tandem duplications (ITDs) of exon 15 have emerged as important oncogenic changes that define several diagnostic entities. In pediatric cancers, BCOR ITDs have recurrently been described in clear cell sarcoma of kidney (CCSK), primitive myxoid mesenchymal tumor of infancy (PMMTI), and central nervous system high-grade neuroepithelial tumor with BCOR ITD in exon 15 (HGNET-BCOR ITDex15). In adults, BCOR ITDs are also reported in endometrial and other sarcomas.

View Article and Find Full Text PDF

Introduction: Tissue from pediatric solid tumors is in high demand for use in high-impact research studies, making the allocation of tissue from an anatomic pathology laboratory challenging. We designed, implemented, and assessed an interdepartmental process to optimize tissue allocation of pediatric solid tumors for both clinical care and research.

Methods: Oncologists, pathologists, surgeons, interventional radiologists, pathology technical staff, and clinical research coordinators participated in the workflow design.

View Article and Find Full Text PDF

The spectrum of neoplasms associated with DICER1 variants continues to expand, with the recent addition of primary "DICER1-associated central nervous system sarcoma" (DCS). DCS is a high-grade malignancy predominantly affecting pediatric patients. Six pediatric DCS were identified through a combination of clinical diagnostic studies, archival inquiry, and interinstitutional collaboration.

View Article and Find Full Text PDF

Purpose: Several aggressive pediatric cancers harbor alterations in , including rhabdoid tumors, epithelioid sarcoma, and chordoma. As tumor profiling has become more routine in clinical care, we investigated the relationship between genetic variants identified by next-generation sequencing (NGS) and INI1 protein expression. Therapeutic approaches for INI1-deficient tumors are limited.

View Article and Find Full Text PDF

A collection of over 1600 sequenced bacteriophages isolated on a single host strain, Mycobacterium smegmatis mc155, can be grouped into over two dozen types that have little or no nucleotide sequence similarity to each other. One group, Cluster K, can be divided into several subclusters, and the well-characterized and much exploited phage TM4 lies in Subcluster K2. Many of the Cluster K phages have broad host ranges and infect both fast- and slow-growing mycobacterial strains.

View Article and Find Full Text PDF

Antigenic variation in the human malaria parasite Plasmodium falciparum involves sequential and mutually exclusive expression of members of the var multi-gene family and appears to follow a non-random pattern. In this study, using a detailed in vitro gene transcription analysis of the culture-adapted HB3 strain of P. falciparum, we show that antigenic switching is governed by a global activation hierarchy favouring short and highly diverse genes in central chromosomal location.

View Article and Find Full Text PDF

Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking.

View Article and Find Full Text PDF

Highly parallel sequencing technologies permit cost-effective whole genome sequencing of hundreds of Plasmodium parasites. The ability to sequence clinical Plasmodium samples, extracted directly from patient blood without a culture step, presents a unique opportunity to sample the diversity of "natural" parasite populations in high resolution clinical and epidemiological studies. A major challenge to sequencing clinical Plasmodium samples is the abundance of human DNA, which may substantially reduce the yield of Plasmodium sequence.

View Article and Find Full Text PDF

Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations.

View Article and Find Full Text PDF

We have cultured Plasmodium falciparum directly from the blood of infected individuals to examine patterns of mature-stage gene expression in patient isolates. Analysis of the transcriptome of P. falciparum is complicated by the highly periodic nature of gene expression because small variations in the stage of parasite development between samples can lead to an apparent difference in gene expression values.

View Article and Find Full Text PDF

Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1).

View Article and Find Full Text PDF

Following infection with Plasmodium falciparum malaria, children in endemic areas develop antibodies specific to antigens on the parasite-infected red cell surface of the infecting isolate, antibodies associated with protection against subsequent infection with that isolate. In some circumstances induction of antibodies to heterologous parasite isolates also occurs and this has been suggested as evidence for cross-reactivity of responses against the erythrocyte surface. The role of these relatively cross-reactive antibodies in protection from clinical malaria is currently unknown.

View Article and Find Full Text PDF

The gene encoding the membrane occupation and recognition nexus protein MORN1 is conserved across the Apicomplexa. In Toxoplasma gondii, MORN1 is associated with the spindle poles, the anterior and posterior rings of the inner membrane complex (IMC). The present study examines the localization of MORN1 during the coccidian development of T.

View Article and Find Full Text PDF

We undertook a genome-wide search for novel noncoding RNAs (ncRNA) in the malaria parasite Plasmodium falciparum. We used the RNAz program to predict structures in the noncoding regions of the P. falciparum 3D7 genome that were conserved with at least one of seven other Plasmodium spp.

View Article and Find Full Text PDF

The Plasmodium falciparum var gene family codes for a major virulence factor in this most lethal of human malaria parasites. A single var protein variant type is expressed on each infected red blood cell, with antigenic variation allowing progeny parasites to escape host immune detection. The control of mutually exclusive var gene expression in the parasite relies on in situ epigenetic changes.

View Article and Find Full Text PDF

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key virulence factor for this species of human malarial parasite. PfEMP1 is expressed on the surface of infected erythrocytes (IEs) and directly mediates adhesion to a variety of host cells. A number of other parasite-encoded proteins are similarly exported to the IE plasma membrane and play an indirect role in this adhesion process through the modification of the erythrocyte cytoskeleton and the formation of electron dense knobs into which PfEMP1 is anchored.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is expressed on the surface of infected erythrocytes where it plays a central role in both infected erythrocytes cytoadhesion and immune evasion. Switches in clonal expression of PfEMP1 result in antigenic variation that facilitates long-term chronic infection of the host. The var gene family encodes PfEMP1 variants, with transcriptional switching between different var variants providing the molecular basis for antigenic variation.

View Article and Find Full Text PDF

The Plasmodium falciparum R29 clone preferentially transcribes the R29var gene variant on rosette selection, unlike other isogenic clones from the same parasite lineage. Characterisation of the R29var gene locus revealed that this gene lies internal to, and is in a tail-to-tail orientation with, a second var gene variant (A4var) at one end of chromosome 13. In the R29 clone, a spontaneous deletion event between these two var variants deletes all of the A4var gene and the subtelomeric repetitive sequence arrays.

View Article and Find Full Text PDF

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane.

View Article and Find Full Text PDF

The var multicopy gene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variant antigens, which, through their ability to adhere to a variety of host receptors, are thought to be important virulence factors. The predominant expression of a single cytoadherent PfEMP1 type on an infected red blood cell, and the switching between different PfEMP1 types to evade host protective antibody responses, are processes thought to be controlled at the transcriptional level. Contradictory data have been published on the timing of var gene transcription.

View Article and Find Full Text PDF

Genomic DNA is organised at its simplest level within phased arrays of nucleosomes, a structure key to the correct transcriptional regulation of the encoded genes. Here we studied chromatin formation on DNA transfected into Plasmodium falciparum either as an episomal plasmid or following integration by homologous recombination. We show that stably maintained and replicated plasmid assembles phased arrays of nucleosomes and that a reporter gene is transcribed in an appropriate temporal manner.

View Article and Find Full Text PDF