Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development.
View Article and Find Full Text PDFBackground: mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear.
Results: We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms.
SALL2/Sall2 is a transcription factor associated with development, neuronal differentiation, and cancer. Interestingly, deficiency leads to failure of the optic fissure closure and neurite outgrowth, suggesting a positive role for SALL2/Sall2 in cell migration. However, in some cancer cells, deficiency is associated with increased cell migration.
View Article and Find Full Text PDFRheb is a small GTPase member of the Ras superfamily and an activator of mTORC1, a protein complex master regulator of cell metabolism, growth, and proliferation. Rheb/mTORC1 pathway is hyperactivated in proliferative diseases, such as Tuberous Sclerosis Complex syndrome and cancer. Therefore, targeting Rheb-dependent signaling is a rational strategy for developing new drug therapies.
View Article and Find Full Text PDFSALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1-3 play dual roles depending on the cancer context and stage of the disease.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2021
Planetary boundaries (PB) is a novel conceptual framework that assesses the state of processes fundamental to the stability of the Earth system. Studies argue a non-linear relationship between economy and environmental degradation, known as the environmental Kuznets curve (EKC). We postulate this inverted-U association between PB and economic output in a worldwide sample.
View Article and Find Full Text PDFThe SALL2 transcription factor, an evolutionarily conserved gene through vertebrates, is involved in normal development and neuronal differentiation. In disease, SALL2 is associated with eye, kidney, and brain disorders, but mainly is related to cancer. Some studies support a tumor suppressor role and others an oncogenic role for SALL2, which seems to depend on the cancer type.
View Article and Find Full Text PDFNUAK1 is an AMPK-related kinase located in the cytosol and the nucleus, whose expression associates with tumor malignancy and poor patient prognosis in several cancers. Accordingly, NUAK1 was associated with metastasis because it promotes cell migration and invasion in different cancer cells. Besides, NUAK1 supports cancer cell survival under metabolic stress and maintains ATP levels in hepatocarcinoma cells, suggesting a role in energy metabolism in cancer.
View Article and Find Full Text PDFFeeding behavior regulation is a complex process, which depends on the central integration of different signals, such as glucose, leptin, and ghrelin. Recent studies have shown that glial cells known as tanycytes that border the basal third ventricle (3V) detect glucose and then use glucose-derived signaling to inform energy status to arcuate nucleus (ARC) neurons to regulate feeding behavior. Monocarboxylate transporters (MCT) 1 and MCT4 are localized in the cellular processes of tanycytes, which could facilitate monocarboxylate release to orexigenic and anorexigenic neurons.
View Article and Find Full Text PDFNUAK1 is a serine/threonine kinase member of the AMPK-α family. NUAK1 regulates several processes in tumorigenesis; however, its regulation and molecular targets are still poorly understood. Bioinformatics analysis predicted that the majority of NUAK1 localizes in the nucleus.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
June 2019
Variation in Disrupted-in-Schizophrenia 1 (DISC1) increases the risk for neurodegenerative diseases, schizophrenia, and other mental disorders. However, the functions of DISC1 associated with the development of these diseases remain unclear. DISC1 has been reported to inhibit Akt/mTORC1 signaling, a major regulator of translation, and recent studies indicate that DISC1 could exert a direct role in translational regulation.
View Article and Find Full Text PDFBackground: Genetically engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Historically, gene targeting was first done in embryonic stem cells (ESCs) derived from the 129 family of inbred strains, leading to a mixed background or congenic mice when crossed with C57BL/6 mice. Depending on the number of backcrosses and breeding strategies, genomic segments from 129-derived ESCs can be introgressed into the C57BL/6 genome, establishing a unique genetic makeup that needs characterization in order to obtain valid conclusions from experiments using GEM lines.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
May 2018
SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood.
View Article and Find Full Text PDFSALL2 is a poorly characterized transcription factor that belongs to the Spalt-like family involved in development. Mutations on SALL2 have been associated with ocular coloboma and cancer. In cancers, SALL2 is deregulated and is proposed as a tumor suppressor in ovarian cancer.
View Article and Find Full Text PDFSALL2, also known as Spalt-like transcription factor 2, is a member of the SALL family of transcription factors involved in development and conserved through evolution. Since its identification in 1996, findings indicate that SALL2 plays a role in neurogenesis, neuronal differentiation and eye development. Consistently, SALL2 deficiency associates with neural tube defects and coloboma, a congenital eye disease.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) disease results from inactivation of the TSC1 or TSC2 gene, and is characterized by benign tumors in several organs. Because TSC tumorigenesis correlates with hyperactivation of mTORC1, current therapies focus on mTORC1 inhibition with rapamycin or its analogs. Rapamycin-induced tumor shrinkage has been reported, but tumor recurrence occurs on withdrawal from rapamycin.
View Article and Find Full Text PDFRheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected.
View Article and Find Full Text PDFThe Sall2 transcription factor is deregulated in several cancers; however, little is known about its cellular functions, including its target genes. Recently, we demonstrated that p53 directly regulates Sall2 expression under genotoxic stress. Here, we investigated the role of Sall2 in the context of cellular response to genotoxic stress.
View Article and Find Full Text PDFWe previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation.
View Article and Find Full Text PDFSALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors.
View Article and Find Full Text PDFRheb is a small GTPase primarily known for activating mammalian target of rapamycin complex 1 (mTORC1) and promoting cell growth in response to insulin and nutrients (amino acids, glucose). Shortage of glucose activates adenosine 5'-monophosphate-activated protein kinase (AMPK), which induces catabolic processes that produce ATP and suppresses energy-consuming anabolic reactions. As part of the latter response, AMPK activates the TSC1-TSC2 tumor suppressor complex, which in turn inhibits Rheb, thereby reducing mTORC1 activity and consequently suppressing protein synthesis.
View Article and Find Full Text PDFConstitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is an autosomally inherited disorder that causes tumors to form in many organs. It is frequently caused by inactivating mutations in the TSC2 tumor-suppressor gene. TSC2 negatively regulates the activity of the GTPase Rheb and thereby inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling.
View Article and Find Full Text PDFTranslational control is an essential process in regulation of gene expression, which occurs at the initiation step performed by a number of translation initiation factor complexes. eIF3a (eIF3 p170) is the largest subunit of the eIF3 complex. eIF3a has been suggested to play roles in regulating translation of a subset of mRNAs and in regulating cell cycle progression and cell proliferation.
View Article and Find Full Text PDFBy screening a fetal brain two-hybrid library with the death domain of the p75 neurotrophin receptor (NTR), we identified the Sall2 transcription factor as a novel interacting protein. Sall2 is a unique member of the Sall gene family, which is believed to be a tumour suppressor. Here, we show that Sall2 contains a p75NTR interaction domain not found in other Sall proteins and that p75NTR/Sall2 complexes co-immunoprecipitate from brain lysates.
View Article and Find Full Text PDF