Background: The use of checkpoint inhibitors has revolutionized cancer therapy. Unfortunately, these therapies often cause immune-related adverse effects, largely due to a lack of tumor specificity.
Methods: We stained human natural killer cells using fusion proteins composed of the extracellular portion of various tumor markers fused to the Fc portion of human IgG1, and identified Nectin4 as a novel TIGIT ligand.
Long, non-coding RNAs (lncRNAs) are involved in the regulation of many cellular processes. The lncRNA IFNG-AS1 was found to strongly influence the responses to several pathogens in mice by increasing interferon gamma (IFNγ) secretion. Studies have looked at IFNG-AS1 in T cells, yet IFNG-AS1 function in natural killer cells (NKs), an important source of IFNγ, remains unknown.
View Article and Find Full Text PDFThe recent approval of oncolytic virus for therapy of melanoma patients has increased the need for precise evaluation of the mechanisms by which oncolytic viruses affect tumor growth. Here we show that the human NK cell-activating receptor NKp46 and the orthologous mouse protein NCR1 recognize the reovirus sigma1 protein in a sialic-acid-dependent manner. We identify sites of NKp46/NCR1 binding to sigma1 and show that sigma1 binding by NKp46/NCR1 leads to NK cell activation Finally, we demonstrate that NCR1 activation is essential for reovirus-based therapy Collectively, we have identified sigma1 as a novel ligand for NKp46/NCR1 and demonstrated that NKp46/NCR1 is needed both for clearance of reovirus infection and for reovirus-based tumor therapy.
View Article and Find Full Text PDFHum Antibodies
February 2018
One of the most exciting fields in modern medicine is immunotherapy, treatment which looks to harness the power of the immune system to fight disease. A particularly effective strategy uses antibodies designed to influence the activity levels of the immune system. Here we look at two receptors - TIGIT and DNAM-1 - which bind the same ligands but have opposite effects on immune cells, earning them the label `paired receptors'.
View Article and Find Full Text PDFThe poliovirus receptor (PVR) is a ubiquitously expressed glycoprotein involved in cellular adhesion and immune response. It engages the activating receptor DNAX accessory molecule (DNAM)-1, the inhibitory receptor TIGIT, and the CD96 receptor with both activating and inhibitory functions. Human cytomegalovirus (HCMV) down-regulates PVR expression, but the significance of this viral function in vivo remains unknown.
View Article and Find Full Text PDFCells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I.
View Article and Find Full Text PDFGenetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered.
View Article and Find Full Text PDFNatural killer (NK) cells mediate innate immune responses against hazardous cells and are particularly important for the control of human cytomegalovirus (HCMV). NKG2D is a key NK activating receptor that recognizes a family of stress-induced ligands, including MICA, MICB, and ULBP1-6. Notably, most of these ligands are targeted by HCMV proteins and a miRNA to prevent the killing of infected cells by NK cells.
View Article and Find Full Text PDFMicroRNAs are key players in most biological processes. Some microRNAs are involved in the genesis of tumors and are therefore termed oncomiRs, while others, termed metastamiRs, play a significant role in the formation of cancer metastases. Previously, we identified ten different cellular microRNAs that downregulate the expression of MICB, a ligand of the activating NK receptor NKG2D.
View Article and Find Full Text PDFTOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation.
View Article and Find Full Text PDFNatural Killer (NK) cells play a central role in the defense against viral infections and in the elimination of transformed cells. The recognition of pathogen-infected and tumor cells is controlled by inhibitory and activating receptors. We have previously shown that among the activating (killer) NK cell receptors the natural cytotoxicity receptors, NKp44 and NKp46, interact with the viral hemagglutinin (HA) protein expressed on the cell surface of influenza-virus-infected cells.
View Article and Find Full Text PDFNK cells are innate immune lymphocytes that express a vast repertoire of germ-line encoded receptors for target recognition. These receptors include inhibitory and activating proteins, among the latter of which is CD16, a low affinity binding Fc receptor. Here, we show that human NK cells expand in response to stimulation with various tumor cell lines.
View Article and Find Full Text PDFPML-RARA and AML1-ETO are important oncogenic fusion proteins that play a central role in transformation to acute myeloid leukemia (AML). Whether these fusion proteins render the tumor cells with immune evasion properties is unknown. Here we show that both oncogenic proteins specifically downregulate the expression of CD48, a ligand of the natural killer (NK) cell activating receptor 2B4, thereby leading to decreased killing by NK cells.
View Article and Find Full Text PDFNatural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim) CD16(Pos)) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright) CD16(Neg)). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors.
View Article and Find Full Text PDFThe activity of natural killer (NK) cells is controlled by a balance of signals derived from inhibitory and activating receptors. TIGIT is a novel inhibitory receptor, recently shown in humans to interact with two ligands: PVR and Nectin2 and to inhibit human NK-cell cytotoxicity. Whether mouse TIGIT (mTIGIT) inhibits mouse NK-cell cytotoxicity is unknown.
View Article and Find Full Text PDFMetastases are responsible for more than 90% of cancer-related deaths. We have recently reported that miR-10b inhibits the expression of MICB, a stress-induced ligand of the activating natural killer (NK)-cell receptor NKG2D. Here, we discuss our findings, which link metastasis formation to immune evasion.
View Article and Find Full Text PDFNatural killer cells (NK) are a component of innate immunity well known for their potent ability to kill virus-infected or neoplastically transformed cells following stimulation of the NK cell receptor NKG2D. One of the various ligands of NKG2D is MICB, a stress-induced ligand that has been found to be upregulated on the surface of tumor cells. However, there is little knowledge about how this upregulation may occur or how it may be selected against in tumors as a mechanism of immune escape.
View Article and Find Full Text PDFNatural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1.
View Article and Find Full Text PDFHLA-G is a non-classical HLA class-Ib molecule expressed mainly by the extravillous cytotrophoblasts (EVT) of the placenta. The expression of HLA-G on these fetal cells protects the EVT cells from immune rejection and is therefore important for a healthy pregnancy. The mechanisms controlling HLA-G expression are largely unknown.
View Article and Find Full Text PDFNK cells employ a variety of activating receptors to kill virally infected and tumor cells. Prominent among these receptors are the natural cytotoxicity receptors (NCRs) (NKp30, NKp44, and NKp46), of which only NKp46 has a mouse ortholog (NCR1). The tumor ligand(s) of NKp46/NCR1 is still unknown, but it was shown that the human NKp46 and the mouse NCR1 are involved in tumor eradication both in vitro and in vivo.
View Article and Find Full Text PDFThe human polyoma viruses JCV and BKV establish asymptomatic persistent infection in 65%-90% of humans but can cause severe illness under immunosuppressive conditions. The mechanisms by which these viruses evade immune recognition are unknown. Here we show that a viral miRNA identical in sequence between JCV and BKV targets the stress-induced ligand ULBP3, which is a protein recognized by the killer receptor NKG2D.
View Article and Find Full Text PDF