Publications by authors named "Pincelli Hull"

Multiple abrupt warming events ("hyperthermals") punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δC) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation's sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δC and δO) throughout the Early Eocene Climate Optimum (~53.

View Article and Find Full Text PDF

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δO) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ) and oxygen isotope (δO) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval.

View Article and Find Full Text PDF

Oxygen minimum zones (OMZs) play a critical role in global biogeochemical cycling and act as barriers to dispersal for marine organisms. OMZs are currently expanding and intensifying with climate change, however past distributions of OMZs are relatively unknown. Here we present evidence for widespread pelagic OMZs during the Pliocene (5.

View Article and Find Full Text PDF

Understanding the sensitivity of species-level responses to long-term warming will become increasingly important as we look towards a warmer future. Here, we examine photosymbiont associations in planktic foraminifera at Shatsky Rise (ODP Site 1209, Pacific Ocean) across periods of global warming of differing magnitude and duration. We compare published data from the Paleocene-Eocene Thermal Maximum (PETM; ~55.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced spectroscopy techniques on modern and fossil amniote bones and found no correlation between atmospheric oxygen levels and metabolic rates; endothermy developed separately in mammals and some ancient reptiles.
  • * Despite being initially high, metabolic rates in some ancient groups like ornithischians declined towards ectothermy, while giant sauropods and theropods were true endotherms, indicating that factors beyond metabolism influenced species survival during the Cretaceous mass extinction.
View Article and Find Full Text PDF

SignificanceThe temperature difference between low and high latitudes is one measure of the efficiency of the global climate system in redistributing heat and is used to test the ability of models to represent the climate system through time. Here, we show that the latitudinal temperature gradient has exhibited a consistent inverse relationship with global mean sea-surface temperature for at least the past 95 million years. Our results help reduce conflicts between climate models and empirical estimates of temperature and argue for a fundamental consistency in the dynamics of heat transport and radiative transfer across vastly different background states.

View Article and Find Full Text PDF

Ocean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.

View Article and Find Full Text PDF

Diatoms are a major primary producer in the modern oceans and play a critical role in the marine silica cycle. Their rise to dominance is recognized as one of the largest shifts in Cenozoic marine ecosystems, but the timing of this transition is debated. Here, we use a diagenetic model to examine the effect of sedimentation rate and temperature on the burial efficiency of biogenic silica over the past 66 million years (i.

View Article and Find Full Text PDF
Article Synopsis
  • The modern rate of species extinctions is compared to historical 'background' extinction rates, which may not fully capture significant extinction events that occur in short pulses.
  • Research suggests it's more relevant to compare today's extinction event with these short-lived pulses rather than long-term averages.
  • A new predictive metric is introduced that links current species extinctions to human-induced ecosystem changes, suggesting we might still avert a mass extinction by actively restoring habitats.
View Article and Find Full Text PDF

Falling atmospheric CO levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.

View Article and Find Full Text PDF

Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer in laboratory culture.

View Article and Find Full Text PDF

The early burst model suggests that disparity rises rapidly to fill empty ecospace following clade origination or in the aftermath of a mass extinction. Early bursts are considered common features of fossil data, but neontological studies have struggled to identify them. Furthermore, tests have proven difficult because factors besides ecology can drive changes in morphology.

View Article and Find Full Text PDF
Article Synopsis
  • The half-billion-year history of animal evolution shows that background extinction rates have decreased, suggesting improved habitability for animals.
  • Evidence indicates that while species interactions and geological extinction triggers haven't lessened, animals have become more resilient to environmental changes.
  • The evolution of larger-bodied animals during the Ediacaran and Cambrian periods led to increased anatomical complexity, which contributed to stability in biogeochemical cycles and lower extinction rates through ecological differentiation.
View Article and Find Full Text PDF
Article Synopsis
  • The origin of avian thermoregulation is challenging to study due to unreliable methods for measuring body temperatures in extinct dinosaurs.
  • Evidence from bone histology and stable isotopes often relies on uncertain assumptions, but the clumped isotope paleothermometry method offers a more reliable approach.
  • Applying this method to fossil eggshells indicates that major dinosaur clades maintained warm body temperatures, suggesting that metabolically regulated thermoregulation was an ancestral trait for dinosaurs.
View Article and Find Full Text PDF

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing.

View Article and Find Full Text PDF

Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm.

View Article and Find Full Text PDF

Ediacaran fossils document the early evolution of complex megascopic life, contemporaneous with geochemical evidence for widespread marine anoxia. These data suggest early animals experienced frequent hypoxia. Research has thus focused on the concentration of molecular oxygen (O) required by early animals, while also considering the impacts of climate.

View Article and Find Full Text PDF

Molecular phylogenies suggest some major radiations of open-ocean fish clades occurred roughly coincident with the Cretaceous-Palaeogene (K/Pg) boundary, however the timing and nature of this diversification is poorly constrained. Here, we investigate evolutionary patterns in ray-finned fishes across the K/Pg mass extinction 66 million years ago (Ma), using microfossils (isolated teeth) preserved in a South Pacific sediment core spanning 72-43 Ma. Our record does not show significant turnover of fish tooth morphotypes at the K/Pg boundary: only two of 48 Cretaceous tooth morphotypes disappear at the event in the South Pacific, a rate no different from background extinction.

View Article and Find Full Text PDF

'…there are known knowns. These are things we know that we know. There are known unknowns.

View Article and Find Full Text PDF

Marine microfossils record the environmental, ecological, and evolutionary dynamics of past oceans in temporally expanded sedimentary archives. Rapid imaging approaches provide a means of exploiting the primary advantage of this archive, the vast number of fossils, for evolution and ecology. Here we provide the first large scale image and 2D and 3D shape dataset of modern planktonic foraminifera, a major microfossil group, from 34 Atlantic Ocean sediment samples.

View Article and Find Full Text PDF

Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using a novel high-throughput morphometric imaging method. These specimens were collected over the past 150 years at 355 localities along a latitudinal gradient ranging from Alaska to Baja California, Mexico and are presented here with individual images, 2D outline coordinates, and 2D measurements of body size and shape.

View Article and Find Full Text PDF

Closely related taxa are, on average, more similar in terms of their physiology, morphology and ecology than distantly related ones. How this biological similarity affects geochemical signals, and their interpretations, has yet to be tested in an explicitly evolutionary framework. Here we compile and analyze planktonic foraminiferal size-specific stable carbon and oxygen isotope values (δC and δO, respectively) spanning the last 107 million years.

View Article and Find Full Text PDF

Knowledge of the onset duration of the Paleocene-Eocene Thermal Maximum-the largest known greenhouse-gas-driven global warming event of the Cenozoic-is central to drawing inferences for future climate change. Single-foraminifera measurements of the associated carbon isotope excursion from Maud Rise (South Atlantic Ocean) are controversial, as they seem to indicate geologically instantaneous carbon release and anomalously long ocean mixing. Here, we fundamentally reinterpret this record and extract the likely PETM onset duration.

View Article and Find Full Text PDF

The structure and function of marine ecosystems are not fixed. Instead, major innovations - from the origin of oxygenic photosynthesis, to the evolution of reefs or of deep bioturbation, to the rise of pelagic calcifiers - have changed biogeochemical cycles and ecosystem dynamics. As a result, modern marine ecosystems are fundamentally different from those in the distant past.

View Article and Find Full Text PDF