Background: Response to pharmacotherapy varies considerably among youths with bipolar disorder (BD) and is poorly predicted by clinical or demographic features. It can take several weeks to determine whether medication for BD is clinically effective. Although neuroimaging biomarkers are promising predictors, few studies examined the predictive value of the brain connectomic topology.
View Article and Find Full Text PDFIEEE Int Conf Comput Vis Workshops
December 2023
Anomaly detection and segmentation pose an important task across sectors ranging from medical imaging analysis to industry quality control. However, current unsupervised approaches require training data to not contain any anomalies, a requirement that can be especially challenging in many medical imaging scenarios. In this paper, we propose Iterative Latent Token Masking, a self-supervised framework derived from a robust statistics point of view, translating an iterative model fitting with M-estimators to the task of anomaly detection.
View Article and Find Full Text PDFThe last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory.
View Article and Find Full Text PDFMedical imaging research is often limited by data scarcity and availability. Governance, privacy concerns and the cost of acquisition all restrict access to medical imaging data, which, compounded by the data-hungry nature of deep learning algorithms, limits progress in the field of healthcare AI. Generative models have recently been used to synthesize photorealistic natural images, presenting a potential solution to the data scarcity problem.
View Article and Find Full Text PDFSleep is essential for physical and mental health. Polysomnography (PSG) procedures are labour-intensive and time-consuming, making diagnosing sleep disorders difficult. Automatic sleep staging using Machine Learning (ML) - based methods has been studied extensively, but frequently provides noisier predictions incompatible with typical manually annotated hypnograms.
View Article and Find Full Text PDFAny clinically-deployed image-processing pipeline must be robust to the full range of inputs it may be presented with. One popular approach to this challenge is to develop predictive models that can provide a measure of their uncertainty. Another approach is to use generative modelling to quantify the likelihood of inputs.
View Article and Find Full Text PDFRecently, several studies have investigated the neurodevelopment of psychiatric disorders using brain data acquired via structural magnetic resonance imaging (sMRI). These analyses have shown the potential of sMRI data to provide a relatively precise characterization of brain structural biomarkers. Despite these advances, a relatively unexplored question is how reliable and consistent a model is when assessing subjects from other independent datasets.
View Article and Find Full Text PDFCancer is a highly heterogeneous condition best visualised in positron emission tomography. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models. While prior work in this field has showcased the efficacy of abnormality detection methods (e.
View Article and Find Full Text PDFPathological brain appearances may be so heterogeneous as to be intelligible only as anomalies, defined by their deviation from normality rather than any specific set of pathological features. Amongst the hardest tasks in medical imaging, detecting such anomalies requires models of the normal brain that combine compactness with the expressivity of the complex, long-range interactions that characterise its structural organisation. These are requirements transformers have arguably greater potential to satisfy than other current candidate architectures, but their application has been inhibited by their demands on data and computational resources.
View Article and Find Full Text PDFBackground And Hypothesis: Schizophrenia is increasingly understood as a disorder of brain dysconnectivity. Recently, graph-based approaches such as graph convolutional network (GCN) have been leveraged to explore complex pairwise similarities in imaging features among brain regions, which can reveal abstract and complex relationships within brain networks.
Study Design: We used GCN to investigate topological abnormalities of functional brain networks in schizophrenia.
Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.
View Article and Find Full Text PDFBackground: Identification of treatment-specific predictors of drug therapies for bipolar disorder (BD) is important because only about half of individuals respond to any specific medication. However, medication response in pediatric BD is variable and not well predicted by clinical characteristics.
Methods: A total of 121 youth with early course BD (acute manic/mixed episode) were prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine ( = 71) or lithium ( = 50).
Background: Establishing objective and quantitative neuroimaging biomarkers at individual level can assist in early and accurate diagnosis of major depressive disorder (MDD). However, most previous studies using machine learning to identify MDD were based on small sample size and did not account for the brain connectome that is associated with the pathophysiology of MDD. Here, we addressed these limitations by applying graph convolutional network (GCN) in a large multi-site MDD dataset.
View Article and Find Full Text PDFDeep Gener Model (2022)
October 2022
Cancers can have highly heterogeneous uptake patterns best visualised in positron emission tomography. These patterns are essential to detect, diagnose, stage and predict the evolution of cancer. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models; these models learn a healthy representation of tissue and detect cancer by predicting deviations from healthy appearances.
View Article and Find Full Text PDFBackground: Children exposed to natural disasters are vulnerable to developing posttraumatic stress disorder (PTSD). Previous studies using resting-state functional neuroimaging have revealed alterations in graph-based brain topological network metrics in pediatric PTSD patients relative to healthy controls (HC). Here we aimed to apply deep learning (DL) models to neuroimaging markers of classification which may be of assistance in diagnosis of pediatric PTSD.
View Article and Find Full Text PDFNormative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed.
View Article and Find Full Text PDFRecent evidence suggests that the human functional connectome is stable at different timescales and is unique. These characteristics posit the functional connectome not only as an individual marker but also as a powerful discriminatory measure characterized by high intersubject variability. Among distinct sources of intersubject variability, the long-term sources include functional patterns that emerge from genetic factors.
View Article and Find Full Text PDFDespite recent advances, assessing biological measurements for neuropsychiatric disorders is still a challenge, where confounding variables such as gender and age (as a proxy for neurodevelopment) play an important role. This study explores brain structural magnetic resonance imaging (sMRI) from two public data sets (ABIDE-II and ADHD-200) with healthy control (HC, = 894), autism spectrum disorder (ASD, = 251), and attention deficit hyperactivity disorder (ADHD, = 357) individuals. We used gray and white matter preprocessed via voxel-based morphometry (VBM) to train a 3D convolutional neural network with a multitask learning strategy to estimate gender, age, and mental health status from structural brain differences.
View Article and Find Full Text PDFPurpose: To use structural magnetic resonance imaging and graph theory approaches to investigate the topological organization of the brain morphological network based on gray matter in essential tremor, and its potential relation to disease severity.
Methods: In this prospective study conducted from November 2018 to November 2019, 36 participants with essential tremor and 37 matched healthy controls underwent magnetic resonance imaging. Brain networks based on the morphological similarity of gray matter across regions were analyzed using graph theory.
As we age, our brain structure changes and our cognitive capabilities decline. Although brain aging is universal, rates of brain aging differ markedly, which can be associated with pathological mechanism of psychiatric and neurological diseases. Predictive models have been applied to neuroimaging data to learn patterns associated with this variability and develop a neuroimaging biomarker of the brain condition.
View Article and Find Full Text PDFThis study explores the topological properties of brain gray matter (GM) networks in patients with paroxysmal kinesigenic dyskinesia (PKD) and asks whether GM network features have potential diagnostic value. We used 3D T1-weighted magnetic resonance imaging and graph theoretical approaches to investigate the topological organization of GM morphological networks in 87 PKD patients and 115 age- and sex-matched healthy controls. We applied a support vector machine to GM morphological network matrices to classify PKD patients versus healthy controls.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis and behavioural variant frontotemporal dementia are two different diseases recognized to overlap at clinical, pathological and genetic characteristics. Both conditions are traditionally known for relative sparing of episodic memory. However, recent studies have disputed that with the report of patients presenting with marked episodic memory impairment.
View Article and Find Full Text PDF• We present Neuroharmony, a harmonization tool for images from unseen scanners. • We developed Neuroharmony using a total of 15,026 sMRI images. • The tool was able to reduce scanner-related bias from unseen scans.
View Article and Find Full Text PDF