Publications by authors named "Pinar Kanlikilicer"

Although significant clinical advances have been made in the treatment of cancer using the immune system, discovery of therapeutic cancer vaccines still remains as an area of interest. Development of the method of pulsing dendritic cells with tumor antigens set the stage for the development of cancer vaccines. Exosomes have gained significant interest because of their ability to activate dendritic cells to recognize and kill cancerous cells.

View Article and Find Full Text PDF

Deregulation of noncoding RNAs, including microRNAs (miRs), is implicated in the pathogenesis of many human cancers, including breast cancer. Through extensive analysis of The Cancer Genome Atlas, we found that expression of miR-22-3p is markedly lower in triple-negative breast cancer (TNBC) than in normal breast tissue. The restoration of miR-22-3p expression led to significant inhibition of TNBC cell proliferation, colony formation, migration, and invasion.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies the transcription factor GATA3, which is highly expressed in HGSOC but not in the fallopian tube, as a key player in these processes; its presence correlates with poor patient outcomes and enhances cancer cell proliferation and migration.
  • * Targeting GATA3 in TAMs has shown promise in reducing tumor growth, chemoresistance, and angiogenesis in HGSOC, suggesting that GATA3 could be a valuable prognostic marker and therapeutic target
View Article and Find Full Text PDF
Article Synopsis
  • KRAS mutations are common in pancreatic ductal adenocarcinoma (PDAC) and triple-negative breast cancer (TNBC), influencing cancer progression and patient survival.
  • Researchers found that the microRNA miR-873 can regulate KRAS, as its lower expression in patients correlates with shorter survival and is linked to increased KRAS levels in PDAC and TNBC cell lines.
  • Restoring miR-873 not only reduces KRAS expression and cancer cell growth but also shows potential for use in gene therapy, demonstrating its role as a tumor suppressor in these cancers.
View Article and Find Full Text PDF

Background: Circulating miRNAs are known to play important roles in intercellular communication. However, the effects of exosomal miRNAs on cells are not fully understood.

Methods: To investigate the role of exosomal miR-1246 in ovarian cancer (OC) microenvironment, we performed RPPA as well as many other in vitro functional assays in ovarian cancer cells (sensitive; HeyA8, Skov3ip1, A2780 and chemoresistant; HeyA8-MDR, Skov3-TR, A2780-CP20).

View Article and Find Full Text PDF

Recent studies indicated that dysregulation of noncoding RNAs (ncRNA) such as miRNAs is involved in pathogenesis of various human cancers. However, the molecular mechanisms underlying miR-34a are not fully understood in triple-negative breast cancer (TNBC). We performed functional assays on TNBC cell lines to investigate the role of miR-34a in FOXM1/eEF2K signaling axis.

View Article and Find Full Text PDF

Maternal smoking during pregnancy is associated with developmental, cognitive, and behavioral disorders, including low birth weight, attention deficit hyperactivity disorder, learning disabilities, and drug abuse later in life. Nicotine activates the reward-driven behavior characteristic of drug abuse. Dopaminergic (DA) neurons originating from the ventral tegmental area (VTA) of the brain, which are stimulated by nicotine and other stimuli, are widely implicated in the natural reward pathway that is known to contribute to addiction.

View Article and Find Full Text PDF

Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK) has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer.

View Article and Find Full Text PDF

Exosomes have emerged as important mediators of diverse biological functions including tumor suppression, tumor progression, invasion, immune escape and cell-to-cell communication, through the release of molecules such as mRNAs, miRNAs, and proteins. Here, we identified differentially expressed exosomal miRNAs between normal epithelial ovarian cell line and both resistant and sensitive ovarian cancer (OC) cell lines. We found miR-940 as abundant in exosomes from SKOV3-IP1, HeyA8, and HeyA8-MDR cells.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) is an aggressive type of breast cancer characterized by the absence of defined molecular targets, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and is associated with high rates of relapse and distant metastasis despite surgery and adjuvant chemotherapy. The lack of effective targeted therapies for TNBC represents an unmet therapeutic challenge. Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical calcium/calmodulin-dependent serine/threonine kinase that promotes TNBC tumorigenesis, progression, and drug resistance, representing a potential novel molecular target.

View Article and Find Full Text PDF

Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes.

View Article and Find Full Text PDF

Maternal smoking during pregnancy is associated with low birth weight, increased risk of stillbirth, conduct disorder, attention-deficit/hyperactivity disorder and neurocognitive deficits. Ventral tegmental area dopamine (DA) neurons in the mesocorticolimbic pathway were suggested to play a critical role in these pathological mechanisms induced by nicotine. Nicotine-mediated changes in genetic expression during pregnancy are of great interest for current researchers.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to target this process are currently available. Here, an integrative computational analysis of the Cancer Genome Atlas OC data set and experimental validation identifies a zinc finger transcription factor ZNF304 associated with OC metastasis. High tumoral ZNF304 expression is associated with poor overall survival in OC patients.

View Article and Find Full Text PDF

Purpose: Zoledronic acid is being increasingly recognized for its antitumor properties, but the underlying functions are not well understood. In this study, we hypothesized that zoledronic acid inhibits ovarian cancer angiogenesis preventing Rac1 activation.

Experimental Design: The biologic effects of zoledronic acid were examined using a series of in vitro [cell invasion, cytokine production, Rac1 activation, reverse-phase protein array, and in vivo (orthotopic mouse models)] experiments.

View Article and Find Full Text PDF

Bacterial production of beta-lactamases, which hydrolyze beta-lactam type antibiotics, is a common antibiotic resistance mechanism. Antibiotic resistance is a high priority intervention area and one strategy to overcome resistance is to administer antibiotics with beta-lactamase inhibitors in the treatment of infectious diseases. Unfortunately, beta-lactamases are evolving at a rapid pace with new inhibitor resistant mutants emerging every day, driving the design and development of novel beta-lactamase inhibitors.

View Article and Find Full Text PDF