Publications by authors named "Pinar Ayata"

The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes.

View Article and Find Full Text PDF

Astrocytes and microglia are emerging key regulators of activity-dependent synapse remodeling that engulf and remove synapses in response to changes in neural activity. Yet, the degree to which these cells communicate to coordinate this process remains an open question. Here, we use whisker removal in postnatal mice to induce activity-dependent synapse removal in the barrel cortex.

View Article and Find Full Text PDF

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD.

View Article and Find Full Text PDF

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures.

View Article and Find Full Text PDF

Background: Copper (Cu) is an essential metal mediating a variety of vital biological reactions with its redox property. Its dyshomeostasis has been associated with accelerated cognitive decline and neurodegenerative disorders, such as Alzheimer's disease (AD). However, underlying neurotoxic mechanisms elicited by dysregulated Cu remain largely elusive.

View Article and Find Full Text PDF

External organic or inorganic objects (foreign bodies) that are inadvertently or purposefully placed in the human or animal tissues can trigger local tissue responses that aim at the elimination and/or segregation of foreign bodies from the tissue. The foreign body response (FBR) may have major implications for neurodegeneration associated with the formation of aberrant protein-based aggregates or plaques. The distinct physical features of the plaques, including high rigidity and varying surface properties, may trigger microglial mechanosensing of the plaque as a foreign body.

View Article and Find Full Text PDF

New protein synthesis is known to be required for the consolidation of memories, yet existing methods of blocking translation lack spatiotemporal precision and cell-type specificity, preventing investigation of cell-specific contributions of protein synthesis. Here we developed a combined knock-in mouse and chemogenetic approach for cell-type-specific drug-inducible protein synthesis inhibition that enables rapid and reversible phosphorylation of eukaryotic initiation factor 2α, leading to inhibition of general translation by 50% in vivo. We use cell-type-specific drug-inducible protein synthesis inhibition to show that targeted protein synthesis inhibition pan-neuronally and in excitatory neurons in the lateral amygdala (LA) impaired long-term memory.

View Article and Find Full Text PDF

Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia.

View Article and Find Full Text PDF

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination.

View Article and Find Full Text PDF

The rapid elimination of dying neurons and nonfunctional synapses in the brain is carried out by microglia, the resident myeloid cells of the brain. Here we show that microglia clearance activity in the adult brain is regionally regulated and depends on the rate of neuronal attrition. Cerebellar, but not striatal or cortical, microglia exhibited high levels of basal clearance activity, which correlated with an elevated degree of cerebellar neuronal attrition.

View Article and Find Full Text PDF

5-hydroxymethylcytosine (5hmC) occurs at maximal levels in postmitotic neurons, where its accumulation is cell-specific and correlated with gene expression. Here we demonstrate that the distribution of 5hmC in CG and non-CG dinucleotides is distinct and that it reflects the binding specificity and genome occupancy of methylcytosine binding protein 2 (MeCP2). In expressed gene bodies, accumulation of 5hmCG acts in opposition to 5mCG, resulting in "functional" demethylation and diminished MeCP2 binding, thus facilitating transcription.

View Article and Find Full Text PDF

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain-containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice.

View Article and Find Full Text PDF

The high level of 5-hydroxymethylcytosine (5hmC) present in neuronal genomes suggests that mechanisms interpreting 5hmC in the CNS may differ from those present in embryonic stem cells. Here, we present quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo. We report that 5hmC is enriched in active genes and that, surprisingly, strong depletion of 5mC is observed over these regions.

View Article and Find Full Text PDF