Publications by authors named "Pinaki Dey"

The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector.

View Article and Find Full Text PDF

Bacterial nanocellulose was produced here using static, static intermittent-fed batch (SIFB) and rotary disc bioreactor (RDB) mode. Economical black tea broth media with symbiotic consortia of bacteria and yeast (SCOBY) was used towards feasible BNC production (instead of commercial NCIM 2526 strain and conventional HS media). The physicochemical characterization of BNC produced in all three modes via FE-SEM, ATR-FTIR, XRD and TGA results showed a highly porous morphology, mostly Iα form, good crystallinity and thermal stability, respectively.

View Article and Find Full Text PDF

The increasing demand for biopolymers across diverse fields, such as food, medicine, cosmetics, and environmental applications, has prompted researchers to explore novel molecules with enhanced functionalities that meet these demands. In this study, a thermophilic strain of Bacillus licheniformis was employed to produce a unique polyamino acid. This thermophilic isolate exhibited rapid growth at 50 °C in a sucrose mineral salts medium, resulting in a biopolymer concentration of 7.

View Article and Find Full Text PDF

The application of on-site produced cellulolytic enzymes in place of commercial enzymes towards hydrolytic preparations of reducing sugars using inexpensive lignocellulosic wastes is considered the most efficient strategy to accomplish a cost-effective biofuel production process. Along with improved production, intrinsic and systematic performance evaluation of the produced enzyme during the hydrolysis process through kinetic intervention remains a crucial requirement for achieving the improved performance of the process. With this motivation, the present study primarily deals with the nutritionally optimized production strategy of cellulases from rice straw (RS) waste using Trichoderma reesei (MTCC 164).

View Article and Find Full Text PDF

Practically, high-yield conversion of biomass into value-added products at low cost is a primary goal for any lignocellulosic refinery. In the industrial context, the limitation in the practical adaptation of the conventional techniques practically involves multiple reactors for the conversion of biomass to bioproducts. Therefore, the present manuscript critically reviewed the advancements in one-pot reaction systems with a major focus on the scientific production of value-added products from lignocellulosic biomass.

View Article and Find Full Text PDF

Strategic valorization of readily available sugarcane bagasse (SB) is very important for waste management and sustainable biorefinery. Conventional SB pretreatment methods are ineffective to meet the requirement for industrial adaptation. Several past studies have highlighted different pretreatment procedures which are lacking environmentally benign characteristics and effective SB bioconversion.

View Article and Find Full Text PDF

A systematic evaluation of microorganism's potential towards biosynthesis of cellulases from inexpensive lignocellulosic feedstock through appropriate kinetic modelling facilitates understanding, optimization and designing of an effective industrial cellulase enzyme production process. The present study aims to optimize a submerged fungal cultivation strategy for cellulase production from abundantly available newspaper wastes (NPW). A combined pretreatment strategy consisting diluted, 1% (v v) HSO followed by 2% (w v) NaOH treatment was highly effective to convert newspaper waste to an effective cellulose-enriched inducer for the production of cellulase.

View Article and Find Full Text PDF

Diabetes mellitus is referred as common metabolic abnormalities characterized as hyperglycemia, mainly caused due to insufficient production of insulin at cellular level or/and defects in insulin action. Such an endocrine disorder is responsible for serious health problems and its worldwide prevalence is rapidly increasing. Common management of diabetes by oral administration of drugs without creating any side effects is still considered a challenging task and increasing cost of conventional medicine in developing countries is another matter of concern.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a life-threatening disease. In this study, we examined the anti-mitochondrial damaging effects of sinapic acid (SA) in isoproterenol (ISO)-induced myocardial infarcted rats. Myocardial infarcted rats were prepared by injecting ISO (100 mg/kg body weight) on the 9th and 10th day.

View Article and Find Full Text PDF

In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses.

View Article and Find Full Text PDF

Experimental investigations were carried out to develop economic production process of cellulase using coconut mesocarp as an inexpensive lignocellulosic inducer while replacing commercial cellulose. Cellulase production was initially investigated from commercial cellulose in different submerged conditions using (MTCC 164). Maximum enzyme production was achieved 6.

View Article and Find Full Text PDF

Experimental investigations were carried out for (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhmvrpsmp6d03qapkk30t6r9r77fueqfc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once