Manipulating active sites of catalysts is crucial but challenging in catalysis science and engineering. Beyond the design of the composition and structure of catalysts, the confined electromagnetic field in optical cavities has recently become a promising method for catalyzing chemical reactions via strong light-matter interactions. Another form of confined electromagnetic field, the charge density wave in plasmonic cavities, however, still needs to be explored for catalysis.
View Article and Find Full Text PDFUnderstanding and managing hot electrons in metals are of fundamental and practical interest in plasmonic studies and applications. A major challenge for the development of hot electron devices requires the efficient and controllable generation of long-lived hot electrons so that they can be harnessed effectively before relaxation. Here, we report the ultrafast spatiotemporal evolution of hot electrons in plasmonic resonators.
View Article and Find Full Text PDFEnergy carrier evolution is crucial for material performance. Ultrafast microscopy has been widely applied to visualize the spatiotemporal evolution of energy carriers. However, direct imaging of a small amount of energy carriers on the nanoscale remains difficult due to extremely weak transient signals.
View Article and Find Full Text PDF