Publications by authors named "Pin-Hui Chen"

We demonstrate the construction of 7 Tesla and 12 Tesla all high-temperature-superconducting (HTS) magnets, small enough to fit on your wrist. The size of the magnet reduces the cost of fabrication, decreases the fringe field to permit facile siting of magnets, and decreases the stored energy of high field magnets. These small HTS-based magnets are being developed for gyrotron microwave sources for use in high-field nuclear magnetic resonance applications.

View Article and Find Full Text PDF

Spherical rotors in magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments have potential advantages relative to cylindrical rotors in terms of ease of fabrication, low risk of rotor crash, easy sample exchange, and better microwave access. However, one major disadvantage so far of spherical rotors is poor NMR filling factor due to the small sample volume and large cylindrical radiofrequency (RF) coil. Here we present a novel NMR coil geometry in the form of a spherical coil.

View Article and Find Full Text PDF

Continuous wave dynamic nuclear polarization (DNP) increases the sensitivity of NMR, yet intense microwave fields are required to transition magic angle spinning (MAS) DNP to the time domain. Here we describe and analyze Teflon lenses for cylindrical and spherical MAS rotors that focus microwave power and increase the electron Rabi frequency, ν. Using a commercial simulation package, we solve the Maxwell equations and determine the propagation and focusing of millimeter waves (198 GHz).

View Article and Find Full Text PDF

Spherical rotors in magic angle spinning (MAS) experiments have significant advantages over traditional cylindrical rotors including simplified spinning implementation, easy sample exchange, more efficient microwave coupling for dynamic nuclear polarization (DNP), and feasibility of downscaling to access higher spinning frequencies. Here, we implement spherical rotors with 4 mm outside diameter (o.d.

View Article and Find Full Text PDF

This study examines the effects of inspiratory muscle warm-up (IMW) on performance and muscle oxygenation during cycling exercise. In a randomized crossover study of 10 female soccer players, the IMW, placebo (IMWP) and control (CON) trials were conducted before two 6-min submaximal cycling exercises (100 and 150W) followed by intermittent high-intensity sprint (IHIS, 6×10s with 60s recovery). The reduction in tissue saturation index (TSI) in legs in the IMW were significantly less than those in IMWP and CON (P<0.

View Article and Find Full Text PDF