Industrial commercialization of perovskite solar cells not only depends on sufficient device performance, but also requires complete elimination of hazardous solvents in the fabrication process to enable sustainable development of the technology. This work reports a new solvent system based on sulfolane, [Formula: see text]-butyrolactone (GBL), and acetic acid (AcOH) as a significantly greener alternative to common but more hazardous solvents. Interestingly, this solvent system not only resulted in densely-packed perovskite layer of bigger crystal size and better crystallinity, the grain boundaries were found to be more rigid and highly conductive to electrical current.
View Article and Find Full Text PDFWith growing population, vertical spaces from skyscrapers are vast. Semi-transparent solar cells enable an effective pathway for vertical energy harvesting. With composition tunability, perovskite materials can be designed with different transparencies and colors.
View Article and Find Full Text PDFRapid advancements in perovskite materials have led to potential applications in various optoelectronic devices, such as solar cells, light-emitting diodes, and photodetectors. Due to good photoelectric properties, perovskite enables low-cost and comparable performance in terms of responsivity, detectivity, and speed to those of the silicon counterpart. In this work, we utilized triple cation perovskite, well known for its high performance, stability, and wide absorption range, which is crucial for broadband photodetector applications.
View Article and Find Full Text PDFThis work aimed to produce hydrogen (H₂) simultaneously with pollutant removal from biodiesel wastewater by photocatalytic oxidation using a thermally-treated commercial titanium dioxide (TiO₂) photocatalyst at room temperature (~30 °C) and ambient pressure. The effects of the operating conditions, including the catalyst loading level (1-6 g/L), UV light intensity (3.52-6.
View Article and Find Full Text PDF