ACS Appl Mater Interfaces
April 2023
We present the fabrication of graphene oxide (GO) and manganese dioxide (MnO) composite fibers via wet spinning processes, which entails the effects of MnO micromorphology and mass loading on the extrudability of GO/MnO spinning dope and on the properties of resulted composite fibers. Various sizes of rod and sea-urchin shaped MnO microparticles have been synthesized via hydrothermal reactions with different oxidants and hydrothermal conditions. Both the microparticle morphology and mass loading significantly affect the extrudability of the GO/MnO mixture.
View Article and Find Full Text PDFThe Li- and Mn-rich layered oxide cathode material class is a promising cathode material type for high energy density lithium-ion batteries. However, this cathode material type suffers from layer to spinel structural transition during electrochemical cycling, resulting in energy density losses during repeated cycling. Thus, improving structural stability is an essential key for developing this cathode material family.
View Article and Find Full Text PDFBackground: Posterior long-segment (LS) fixation, short-segment (SS) fixation, and short segment fixation with intermediate screws (SI) have shown good outcomes for the treatment of thoracolumbar burst fractures. However, limited data compared the biomechanical properties between LS fixation and SI. The purpose of this study was to compare the von Mises stresses on the pedicular screw system and bone between posterior LS fixation, SS fixation, and SI for the treatment of thoracolumbar burst fracture.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2020
Lithium-rich layered oxide materials, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Fe, Co, Ni, etc.), are a promising candidate for use as cathode materials in the batteries of electric vehicles (EVs). This is due to their high energy density (∼900 W h kg-1), which is larger than those of the currently used commercial cathode materials.
View Article and Find Full Text PDFMixtures of cellulose acetate (M.W. ∼3 × 10 g/mol) dissolved in 75% v/v acetic acid in water (17% w/w) and ground anatase titania particles with diameters of 197 ± 75 nm (0%, 5% and 10% w/w) were electrospun at 17 kV with a fiber collection distance and a feed rate of 10 cm and 0.
View Article and Find Full Text PDFLayered-layered composite oxides of the form xLiMnO·(1-x) LiMO (M = Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0-4.8 V.
View Article and Find Full Text PDFAn aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)3-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions.
View Article and Find Full Text PDF