Viedma ripening is a process that combines abrasive grinding of a slurry of crystals with solution-phase racemization, resulting in solid-phase deracemization. One of the major disadvantages of Viedma ripening is that the desired compound needs to crystallize as a racemic conglomerate, accounting for only 5-10 % of all chiral molecules. Herein, we show that use of a chiral additive causes deracemization under conditions, in which the compound normally crystallizes as a racemic compound.
View Article and Find Full Text PDFThe scope of Viedma ripening and temperature cycling with respect to chiral molecules has remained mostly limited to molecules with a single stereogenic center, while racemization proceeds through inversion at that particular stereocenter. In this article we demonstrate for the first time that atropisomers, chiral rotamers that possess an axis of chirality, can be successfully deracemized in the solid phase by either applying temperature cycling or Viedma ripening.
View Article and Find Full Text PDFThe mechanical properties of cells and the extracellular environment they reside in are governed by a complex interplay of biopolymers. These biopolymers, which possess a wide range of stiffnesses, self-assemble into fibrous composite networks such as the cytoskeleton and extracellular matrix. They interact with each other both physically and chemically to create a highly responsive and adaptive mechanical environment that stiffens when stressed or strained.
View Article and Find Full Text PDF