Publications by authors named "Pim Borman"

Purpose: Long treatment sessions are a limitation within magnetic resonance imaging guided adaptive radiation therapy (MRIgART). This work aims for significantly enhancing the delivery efficiency on the magnetic resonance linear accelerator (MR-linac) by introducing dedicated optimization and delivery techniques for volumetric modulated arc therapy (VMAT). VMAT plan and delivery quality during MRIgART is compared with step-and-shoot intensity-modulated radiation therapy (IMRT) for prostate stereotactic body radiation therapy.

View Article and Find Full Text PDF

Background: Stereotactic arrhythmia radioablation (STAR) is a novel treatment approach for refractory ventricular tachycardia (VT). The risk of treatment-induced toxicity and geographic miss can be reduced with online MRI-guidance on an MR-linac. However, most VT patients carry cardiac implantable electronic devices (CIED), which compromise MR images.

View Article and Find Full Text PDF

Purpose: To assess patient experience and anxiety during magnetic resonance (MR)-guided radiation therapy (MRgRT) using a hybrid 1.5Tesla (T) MR-guided linear accelerator (MR-Linac) when offered calming video content.

Methods And Materials: A single-center study was conducted within the Multi-Outcome Evaluation of Radiation Therapy Using the MR-Linac (MOMENTUM) cohort.

View Article and Find Full Text PDF

Purpose: Develop a true real-time implementation of MR signature matching (MRSIGMA) for free-breathing 3D MRI with sub-200 ms latency on the Elekta Unity 1.5T MR-Linac.

Methods: MRSIGMA was implemented on an external computer with a network connection to the MR-Linac.

View Article and Find Full Text PDF

Background: Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition.

View Article and Find Full Text PDF

Background: Several (online) adaptive radiotherapy procedures are available to maximize healthy tissue sparing in the presence of inter/intrafractional motion during stereotactic body radiotherapy (SBRT) on an MR-linac. The increased treatment complexity and the motion-delivery interplay during these treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This is not possible with currently available phantoms.

View Article and Find Full Text PDF

Purpose: Respiratory-correlated 4D-MRI may provide motion characteristics for radiotherapy but is susceptible to irregular breathing. This study investigated the effectiveness of visual biofeedback (VBF) guidance for breathing regularization during 4D-MRI acquisitions on an MR-linac.

Methods: A simultaneous multislice-accelerated 4D-MRI sequence was interleaved with a one-dimensional respiratory navigator (1D-RNAV) in 10 healthy volunteers on a 1.

View Article and Find Full Text PDF

This work reports on the first seven patients treated with gating and baseline drift correction on the high-field MR-Linac system. Dosimetric analysis showed that the active motion management system improved congruence to the planned dose, efficiently mitigating detrimental effects of intrafraction motion in the upper abdomen.

View Article and Find Full Text PDF

Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of spatio-temporal encoding (SPEN) readout for pseudo-continuous ASL (pCASL) in brain, and its robustness to susceptibility artifacts as introduced by aneurysm clips.

Methods: A 2D self-refocused T *-compensated hybrid SPEN scheme, with super-resolution reconstruction was implemented on a 1.5T Philips system.

View Article and Find Full Text PDF

Background And Purpose: VMAT is not currently available on MR-linacs but could maximize plan conformality. To mitigate respiration without compromising delivery efficiency, MRI-guided MLC tumour tracking was recently developed for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) in combination with IMRT.

View Article and Find Full Text PDF

Purpose: Respiratory motion management is important in abdominothoracic radiotherapy. Fast imaging of the tumor can facilitate multileaf collimator (MLC) tracking that allows for smaller treatment margins, while repeatedly imaging the full field-of-view is necessary for 4D dose accumulation. This study introduces a hybrid 2D/4D-MRI methodology that can be used for simultaneous MLC tracking and dose accumulation on a 1.

View Article and Find Full Text PDF

Background And Purpose: The heart is important in radiotherapy either as target or organ at risk. Quantitative T and T cardiac magnetic resonance imaging (qMRI) may aid in target definition for cardiac radioablation, and imaging biomarker for cardiotoxicity assessment. Hybrid MR-linac devices could facilitate daily cardiac qMRI of the heart in radiotherapy.

View Article and Find Full Text PDF

Purpose: The treatment margins for lung stereotactic body radiotherapy (SBRT) are often large to cover the tumor excursions resulting from respiration, such that underdosage of the tumor can be avoided. Magnetic resonance imaging (MRI)-guided multi-leaf collimator (MLC) tracking can potentially reduce the influence of respiration to allow for smaller treatment margins. However, tracking is accompanied by system latency that may induce residual tracking errors.

View Article and Find Full Text PDF

To develop and evaluate a combined motion-assisted/gated MRHIFU heating strategy designed to accelerate the treatment procedure by reducing the required number of sonications to ablate a target volume in the pancreas. A planning method for combined motion-assisted/gated MRHIFU using 4D-MRI and motion characterization is introduced. Six healthy volunteers underwent 4D-MRI for target motion characterization on a 3.

View Article and Find Full Text PDF

Purpose: To assess overall robustness and accuracy of a modified particle filter-based tracking algorithm for magnetic resonance (MR)-guided radiation therapy treatments.

Methods And Materials: An improved particle filter-based tracking algorithm was implemented, which used a normalized cross-correlation function as the likelihood calculation. With a total of 5 healthy volunteers and 8 patients, the robustness of the algorithm was tested on 24 dynamic magnetic resonance imaging (MRI) time series with varying resolution, contrast, and signal-to-noise ratio.

View Article and Find Full Text PDF