Publications by authors named "Pilong Shi"

UNC-51-like kinase 1 (ULK1), a primary serine/threonine kinase, is implicated in diverse pathophysiological processes. Previous findings have linked ULK1-dependent autophagy to cardiac hypertrophy. Our study further explored the functional role and molecular mechanisms of ULK1 in non-autophagic signaling pathways.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the protective effects of biochanin A (BCA) on cardiac hypertrophy and to elucidate the underlying molecular mechanisms. The research question was whether BCA can reverse heart dysfunction and attenuate cardiomyocyte hypertrophy induced by pressure overload and AngII, respectively, and how it interacts with the NLRP3 pyroptosis pathway to achieve these effects.

Methods: We employed an animal model of pressure overload-induced cardiac hypertrophy and an in vitro model of AngII-induced cardiomyocyte hypertrophy to assess the effects of BCA.

View Article and Find Full Text PDF

Purpose: Myocardial ischemia-reperfusion injury (MI/RI) is associated with increased oxidative damage and mitochondrial dysfunction, resulting in an elevated risk of mortality. MI/RI may be alleviated by protecting cardiomyocytes from oxidative stress. Lutein, which belongs to a class of carotenoids, has proven to be effective in cardiovascular disease treatment due to its remarkable antioxidant properties, but its application is limited due to its poor stability and low bioavailability in vivo.

View Article and Find Full Text PDF

Background: Cardiac microvascular damage is substantially related with the onset of myocardial ischaemia-reperfusion (IR) injury. Reportedly, allicin (AL) effectively protects the cardiac microvascular system from IR injury. However, the unsatisfactory therapeutic efficacy of current drugs and insufficient drug delivery to the damaged heart are major concerns.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is the common pathological process of multiple cardiovascular diseases. However, the molecular mechanisms of cardiac hypertrophy are unclear. Long non-coding RNA (lncRNA), a newly discovered type of transcript that has been demonstrated to function as crucial regulators in the development of cardiovascular diseases.

View Article and Find Full Text PDF

Research suggests that ischemic glycolysis improves myocardial tolerance to anoxia and low-flow ischemia. The rate of glycolysis during ischemia reflects the severity of the injury caused by ischemia and subsequent functional recovery following reperfusion. Histone H2AK119 ubiquitination (H2Aub) is a common modification that is primarily associated with gene silencing.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are expressed aberrantly in cardiac disease, but their roles in cardiac hypertrophy are still unknown. Here we sought to identify a specific lncRNA and explore the mechanisms underlying lncRNA functions. Our results revealed that lncRNA Snhg7 was a super-enhancer-driven gene in cardiac hypertrophy by using chromatin immunoprecipitation sequencing (ChIP-seq).

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (I/R) injury is a multifactorial process caused by transient tissue hypoxia and the following reoxygenation, commonly occurring in liver transplantation and hepatectomy. Hepatic I/R can induce a systemic inflammatory response, liver dysfunction, or even multiple organ failure. Although we have previously reported that taurine could attenuate acute liver injury after hepatic I/R, only a tiny proportion of the systemically injected taurine could reach the targeted organ and tissues.

View Article and Find Full Text PDF

Pathway analysis is considered as an important strategy to reveal the underlying mechanisms of diseases. Pathways that are involved in crosstalk can regulate each other and co-regulate downstream biological processes. Furthermore, some genes in the pathways can function with other genes the relationship of the competing endogenous RNA (ceRNA) mechanism, which has also been demonstrated to play key roles in cellular biology.

View Article and Find Full Text PDF

The molecular characteristics of ferroptosis in cardiac hypertrophy have been rarely studied. Especially, there have been no studies to investigate the regulatory mechanisms of docosahexaenoic acid (DHA) on ferroptosis in cardiac hypertrophy. This study was designed to determine the role of ferroptosis in microvascular injury, and investigate the contribution of DHA in suppressing ferroptosis and preventing pressure overload-mediated endothelial damage.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac microvascular dysfunction contributes to cardiac hypertrophy and can lead to heart failure, with long non-coding RNAs (lncRNAs) playing a significant role.
  • A specific lncRNA, identified in cardiac hypertrophy rats and Ang II-induced CMECs, promotes ferroptosis by disrupting cellular iron homeostasis through its interaction with other molecules.
  • A novel delivery system using neutrophil membranes shows promise in targeting this lncRNA, suggesting potential therapeutic avenues for treating cardiac hypertrophy.
View Article and Find Full Text PDF

Microvessel hypoperfusion following ischemic stress resulted in a decreased shear stress of brain microvascular endothelial cells (BMECs) and contributed to abnormal expression of PECAM-1 after global cerebral ischemia/reperfusion (I/R) injury. Here, we identified novel pathophysiologic and rehabilitative procedures specific to shear stress in microvascular endothelial cells in response to global cerebral I/R injury. We found that the decrease in cerebral blood flow of gerbils after global cerebral I/R injury reduces shear stress, and the abnormal change in shear stress leads to microvascular endothelial cell and neuron damage.

View Article and Find Full Text PDF

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy.

View Article and Find Full Text PDF

Cardiac hypertrophy, a response of the heart to increased workload, is a major risk factor for heart failure. Myostatin (MSTN) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In recent years, cardiomyocyte autophagy also has been considered to be involved in controlling the hypertrophic response.

View Article and Find Full Text PDF

Increasing neuropeptide Y (NPY) has been shown to be a risk factor for cardiovascular diseases. However, its role and mechanism in myocardial infarction (MI) have not yet been fully understood. H9c2 cells and neonatal rat ventricular myocytes with loss of function of NPY and rats with global knockout were used in this study.

View Article and Find Full Text PDF

Objective: Cerebral ischemia is the most common type of neuronal injury and is characterized by a reduction in the function and number of hippocampal neurons. Carvacrol has a significant neuroprotective effect in cerebral ischemia. However, the mechanisms by which carvacrol affects cerebral ischemia, especially with respect to the regulation of neuronal damage by iron levels, have never been systematically studied.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is an adaptive response of the myocardium to pressure or volume overload. Recent evidences indicate that allicin can prevent cardiac hypertrophy. However, it is not clear whether allicin alleviates cardiac hypertrophy by inhibiting autophagy.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR-103 expression was significantly decreased in heart failure patients.

View Article and Find Full Text PDF

Objective: Cardiac microvascular damage is significantly associated with the development of cardiac hypertrophy (CH). Researchers found that allicin could inhibit CH, but the relationship between cardiac microvessel and the inhibition of allicin on CH has not been reported. We aimed to investigate the effect of allicin on the function of cardiac microvascular endothelial cells (CMECs) in CH rat.

View Article and Find Full Text PDF
Article Synopsis
  • * TRPV3, a type of TRP channel, shows increased expression in pathological cardiac hypertrophy but not in exercise-induced hypertrophy, indicating its specific role in heart disease.
  • * Activation of TRPV3 enhances calcium concentration and promotes key proteins (calcineurin, phosphorylated CaMKII, NFATc3), exacerbating hypertrophy, while blocking TRPV3 reduces these protein expressions, suggesting TRPV3 could be a potential target for treatment.
View Article and Find Full Text PDF

Hepatic ischemia reperfusion (I/R) injury is very common in liver transplantation and major liver surgeries and may cause liver failure or even death. Docosahexaenoic acid (DHA) has displayed activities in reducing oxidative stress and inflammatory reaction in many disorders. In the present study, we investigated the protective effects of DHA against I/R-induced injury and the underlying mechanisms.

View Article and Find Full Text PDF

Objectves: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca -permeant cation channels. In this study, we aim to investigate the role of TRPV3 in pulmonary vascular remodeling and PASMCs proliferation under hypoxia.

Materials And Methods: The expression of TRPV3 was evaluated in patients with pulmonary arterial hypertension (PAH) and hypoxic rats, using hematoxylin and eosin (H&E) and immunohistochemistry.

View Article and Find Full Text PDF

Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear.

View Article and Find Full Text PDF

Cardiac fibrosis is pathological damage associated with nearly all forms of heart disease. AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme. Emerging evidences indicate that AMPK plays an important role in cardiac fibrosis and cell proliferation.

View Article and Find Full Text PDF

Carvacrol (CAR) is a compound isolated from some essential oils, many studies have demonstrated its therapeutic potential on different diseases. This study aims to evaluate the protective effect of CAR against myocardial ischemia/reperfusion (I/R) injury in rats. Male adult rats underwent ligation of the left anterior descending coronary artery (LAD) in I/R models.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session23eivkmkugkmlabue7eu43svks7f2vmc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once