Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions.
View Article and Find Full Text PDFJMJD1C, a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival.
View Article and Find Full Text PDFVarious ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS).
View Article and Find Full Text PDFHeterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation.
View Article and Find Full Text PDFPlant cells share a number of biological condensates with cells from other eukaryotes. There are, however, a growing number of plant-specific condensates that support different cellular functions. Condensates operating in different plant tissues contribute to aspects of development and stress responses.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy.
View Article and Find Full Text PDFPrecise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels.
View Article and Find Full Text PDFSci China Life Sci
July 2024
A common approach in therapeutic protein development involves employing synthetic ligands with multivalency, enabling sophisticated control of signal transduction. Leveraging the emerging concept of liquid-liquid phase separation (LLPS) and its ability to organize cell surface receptors into functional compartments, we herein have designed modular ligands with phase-separation modalities to engineer programmable interreceptor communications and precise control of signal pathways, thus inducing the rapid, potent, and specific apoptosis of tumor cells. Despite their simplicity, these "triggers", named phase-separated Tumor Killers (hereafter referred to as psTK), are sufficient to yield interreceptor clustering of death receptors (represented by DR5) and tumor-associated receptors, with notable features: LLPS-mediated robust high-order organization, well-choreographed conditional activation, and broad-spectrum capacity to potently induce apoptosis in tumor cells.
View Article and Find Full Text PDFPlant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities.
View Article and Find Full Text PDFIn the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin.
View Article and Find Full Text PDFChem Commun (Camb)
January 2024
The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells.
View Article and Find Full Text PDFBiomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease.
View Article and Find Full Text PDFPolycomb repressive complex 2 (PRC2) is central to polycomb repression as it trimethylates lysine 27 on histone H3 (H3K27me3). How PRC2 is recruited to its targets to deposit H3K27me3 remains an open question. Polycomb-like (PCL) proteins, a group of conserved PRC2 accessory proteins, can direct PRC2 to its targets.
View Article and Find Full Text PDFRNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
July 2023
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete.
View Article and Find Full Text PDFCancer-associated chromosomal rearrangements can result in the expression of numerous pathogenic fusion proteins. The mechanisms by which fusion proteins contribute to oncogenesis are largely unknown, and effective therapies for fusion-associated cancers are lacking. Here we comprehensively scrutinized fusion proteins found in various cancers.
View Article and Find Full Text PDFBiomolecular condensates play key roles in various biological processes. However, specific condensation modulators are currently lacking. PROTAC is a new technology that can use small molecules to degrade target proteins specifically.
View Article and Find Full Text PDFAs phase separation is found in an increasing variety of biological contexts, additional challenges have arisen in understanding the underlying principles of condensate formation and function. We spoke with researchers across disciplines about their views on the ever-changing landscape of biomolecular condensates.
View Article and Find Full Text PDFIn eukaryotes, end-binding (EB) proteins serve as a hub for orchestrating microtubule dynamics and are essential for cellular dynamics and organelle movements. EB proteins modulate structural transitions at growing microtubule ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. However, the molecular mechanisms and physiochemical properties of the EB1 interaction network remain elusive.
View Article and Find Full Text PDFNat Chem Biol
December 2022
Cells are exquisitely compartmentalized to achieve precise spatiotemporal regulation of myriad processes and pathways. Phase separation offers one way to achieve territorial organization in the cellular context, via the creation of membrane-less organelles (MLOs). MLOs formed through phase separation are associated with numerous critical biological functions.
View Article and Find Full Text PDFThe landscape of cell-surface signaling is formidably complex. Robust tools capable of manipulating the spatiotemporal distribution of cell-surface proteins (CSPs) for dissecting signaling are in high demand. Some CSPs are regulated via multivalency-driven liquid-liquid phase separation (LLPS).
View Article and Find Full Text PDF