Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice.
View Article and Find Full Text PDFBackground: Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils.
Methods: Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated.
Pulmonary fibrosis is potentiated by a positive feedback loop involving the extracellular sialidase enzyme neuraminidase 3 (NEU3) causing release of active TGF-β1 and TGF-β1 upregulating NEU3 by increasing translation without affecting mRNA levels. In this report, we elucidate the TGF-β1 upregulation of the translation mechanism. In human lung fibroblasts, TGF-β1 increased levels of proteins, including NEU3, by increasing translation of the encoding mRNAs without significantly affecting levels of these mRNAs.
View Article and Find Full Text PDFFibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis.
View Article and Find Full Text PDFSialidases, also called neuraminidases, are enzymes that cleave terminal sialic acids from glycoconjugates. In humans and mice, lung fibrosis is associated with desialylation of glycoconjugates and upregulation of sialidases. There are four mammalian sialidases, and it is unclear when the four mammalian sialidases are elevated over the course of inflammatory and fibrotic responses, whether tissue resident and inflammatory cells express different sialidases, and if sialidases are differentially expressed in male and females.
View Article and Find Full Text PDFBackground: Sialic acid is often the distal sugar on glycoconjugates, and sialidases are enzymes that remove this sugar. In fibrotic lesions in human and mouse lungs, there is extensive desialylation of glycoconjugates, and upregulation of sialidases including the extracellular sialidase NEU3. In the bleomycin model of pulmonary fibrosis, mice lacking NEU3 (Neu3) showed strongly attenuated bleomycin-induced weight loss, lung damage, inflammation, and fibrosis.
View Article and Find Full Text PDFSome extracellular glycoconjugates have sialic acid as the terminal sugar, and sialidases are enzymes that remove this sugar. Mammals have 4 sialidases and can be elevated in inflammation and fibrosis. In this report, we show that incubation of human neutrophils with the extracellular human sialidase NEU3, but not NEU1, NEU2 or NEU4, induces human male and female neutrophils to change from a round to a more amoeboid morphology, causes the primed human neutrophil markers CD11b, CD18, and CD66a to localize to the cell cortex, and decreases the localization of the unprimed human neutrophil markers CD43 and CD62-L at the cell cortex.
View Article and Find Full Text PDFSARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes and is characterized by the accumulation of fat in the liver (steatosis). NAFLD can transition into non-alcoholic steatohepatitis (NASH), with liver cell injury, inflammation, and an increased risk of fibrosis. We previously found that injections of either 1866, a synthetic ligand for the lectin receptor CD209, or DANA, a sialidase inhibitor, can inhibit inflammation and fibrosis in multiple animal models.
View Article and Find Full Text PDFHigh-fat diet (HFD)-induced inflammation and steatosis of adipose tissue and liver are associated with a variety of serious health risks. Sialic acids are found as the distal terminal sugar on glycoproteins, which are removed by sialidases (neuraminidases). In humans and mice, pulmonary fibrosis is associated with up-regulation of sialidases, and injections of sialidase inhibitors attenuate bleomycin-induced pulmonary fibrosis.
View Article and Find Full Text PDFSARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials.
View Article and Find Full Text PDFHigh-fat diet (HFD)-induced inflammation is associated with a variety of health risks. The systemic pentraxin serum amyloid P (SAP) inhibits inflammation. SAP activates the high-affinity IgG receptor Fcγ receptor I (FcγRI; CD64) and the lectin receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209).
View Article and Find Full Text PDFFibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation. Blood platelets contain 60-100-mer polymers of phosphate groups called polyphosphate, and when activated, platelets induce blood clotting (the first step in wound healing) in part by the release of polyphosphate. We find that activated platelets release a factor that promotes fibrocyte differentiation.
View Article and Find Full Text PDFIn patients with invasive fungal diseases, there is often little cellular inflammatory response. We tested the idea that binding of the human constitutive plasma protein serum amyloid P component (SAP) (also called PTX2) to dampens the innate immune response to this fungus. Many pathogenic fungi have cell surface amyloid-like structures important for adhesion and biofilm formation.
View Article and Find Full Text PDFThe movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils.
View Article and Find Full Text PDFPentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics.
View Article and Find Full Text PDFCompared to neutrophil chemoattractants, relatively little is known about the mechanism neutrophils use to respond to chemorepellents. We previously found that the soluble extracellular protein dipeptidyl peptidase IV (DPPIV) is a neutrophil chemorepellent. In this report, we show that an inhibitor of the protease activated receptor 2 (PAR2) blocks DPPIV-induced human neutrophil chemorepulsion, and that PAR2 agonists such as trypsin, tryptase, 2f-LIGRL, SLIGKV, and AC55541 induce human neutrophil chemorepulsion.
View Article and Find Full Text PDFPurpose: High levels of NaCl in the diet are associated with both cardiac and renal fibrosis, but whether salt intake affects pulmonary fibrosis has not been examined.
Aim Of The Study: To test the hypothesis that salt intake might affect pulmonary fibrosis.
Materials And Methods: Mice were fed low, normal, or high salt diets for 2 weeks, and then treated with oropharyngeal bleomycin to induce pulmonary fibrosis, or oropharyngeal saline as a control.
Background: Pentraxins are a family of highly conserved secreted proteins that regulate the innate immune system, including monocytes and macrophages. C-reactive protein (CRP) is a plasma protein whose levels can rise to 1000 μg/ml from the normal <3 μg/ ml during inflammation.
Results: We find that CRP inhibits proliferation of the human myeloid leukemia cell line Mono Mac 6 with an IC50 of 75 μg/ ml by inducing apoptosis of these cells.
Fibrosis involves increasing amounts of scar tissue appearing in a tissue, but what drives this is unclear. In fibrotic lesions in human and mouse lungs, we found extensive desialylation of glycoconjugates, and upregulation of sialidases. The fibrosis-associated cytokine TGF-β1 upregulates sialidases in human airway epithelium cells, lung fibroblasts, and immune system cells.
View Article and Find Full Text PDFBackground: Circulating bone marrow-derived monocytes can leave the blood, enter a tissue, and differentiate into M1 inflammatory, M2a remodeling/fibrotic, or M2c/Mreg resolving/immune-regulatory macrophages. Macrophages can also convert from one of the above types to another. Pentraxins are secreted proteins that bind to, and promote efficient clearance of, microbial pathogens and cellular debris during infection, inflammation, and tissue damage.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
In healing wounds and fibrotic lesions, fibroblasts and monocyte-derived fibroblast-like cells called fibrocytes help to form scar tissue. Although fibrocytes promote collagen production by fibroblasts, little is known about signaling from fibroblasts to fibrocytes. In this report, we show that fibroblasts stimulated with the fibrocyte-secreted inflammatory signal tumor necrosis factor-α secrete the small leucine-rich proteoglycan lumican, and that lumican, but not the related proteoglycan decorin, promotes human fibrocyte differentiation.
View Article and Find Full Text PDFObjective: To determine whether an intraarticular injection of the neutrophil chemorepellent dipeptidyl peptidase IV (DPPIV; CD26) can attenuate inflammation and decrease the severity of arthritis in a murine model.
Methods: DBA/1 mice were immunized with type II collagen/Freund's complete adjuvant to produce collagen-induced arthritis (CIA). On day 25 postimmunization, recombinant human DPPIV (rhDPPIV) or phosphate buffered saline was injected intraarticularly, and arthritis severity scores were recorded 3 times per week.
Fibrosis is caused by scar tissue formation in internal organs and is associated with 45% of deaths in the United States. Two closely related human serum proteins, serum amyloid P (SAP) and C-reactive protein (CRP), strongly affect fibrosis. In multiple animal models, and in Phase 1 and Phase 2 clinical trials, SAP affects several aspects of the innate immune system to reduce fibrosis, whereas CRP appears to potentiate fibrosis.
View Article and Find Full Text PDF