Chimeric Antigen Receptor (CAR) T cell-derived Extracellular Vesicles (EVs) might represent a new therapeutic tool for boosting CAR-T cell antileukemic effects. Here, a cohort of 22 patients infused with CD19.CAR-T cells was monitored for the presence of circulating CD19.
View Article and Find Full Text PDFRegenerative medicine and tissue engineering aim to restore or replace impaired organs and tissues using cell transplantation supported by scaffolds. Recently scientists are focusing on developing new biomaterials that optimize cellular attachment, migration, proliferation, and differentiation. Nanoparticles, such as graphene oxide (GO), have emerged as versatile materials due to their high surface-to-volume ratio and unique chemical properties, such as electrical conductivity and flexibility.
View Article and Find Full Text PDFHumans exposed to altitude hypoxia experience dysfunctions of the urinary system. As a non-invasive, easily manageable and informative biological sample, urine represents a relevant matrix for detecting clinical impairments of urinary system, as well as alterations of other systems and extracellular vesicles (EVs) biology during high-altitude expeditions. Nevertheless, gaps exist in the comprehensive assessment of dysfunction, molecular burden and EVs biology due to high-altitude acute exposure.
View Article and Find Full Text PDFPurpose: developing customized titanium specimens, with innovative surfaces, is a suitable strategy to overcome implant failure. Additionally, a faster and efficient osteogenic commitment assists tissue regeneration. To investigate the interplay between inflammation and differentiation upon implantation, Dental Pulp Stem Cells (DPSCs) were cultured on 3D-printed titanium owning an internal open cell form, administering osteogenic factors by a liposomal formulation (LipoMix) compared to traditional delivery of differentiation medium (DM).
View Article and Find Full Text PDFThe aim of this study was the evaluation of suitability of novel mucoadhesive hydrogel platforms for the delivery of therapeutics useful for the management of disorders related to the gastrointestinal tract (GI). At this purpose, here we describe the preparation, the physicochemical characterization and drug delivery behaviour of novel hydrogels, based on self-assembling lipopeptides (MPD02-09), obtained by covalently conjugating lauric acid (LA) to SNA's peptide derivatives gotten by variously combining D- and L- amino acid residues. LA conjugation was aimed at improving the stability of the precursor peptides, obtaining amphiphilic structures, and triggering the hydrogels formation through the self-assembling.
View Article and Find Full Text PDFIntroduction: As the intermediate nucleus in the brainstem receiving information from the tongue and transmitting information upstream, the rostral portion of the nucleus tractus solitarius (rNTS) is most often described as a "taste relay". Although recent evidence implicates the caudal NTS in a broad neural circuit involved in regulating ingestion, there is little information about how cells in the rNTS respond when an animal is eating solid food.
Methods: Single cells in the rNTS were recorded in awake, unrestrained rats as they explored and ate solid foods (Eating paradigm) chosen to correspond to the basic taste qualities: milk chocolate for sweet, salted peanuts for salty, Granny Smith apples for sour and broccoli for bitter.
Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy.
View Article and Find Full Text PDFPancreatic cancer (PC) has a poor prognosis and displays resistance to immunotherapy. A better understanding of tumor-derived extracellular vesicle (EV) effects on immune responses might contribute to improved immunotherapy. EVs derived from Capan-2 and BxPC-3 PC cells isolated by ultracentrifugation were characterized by atomic force microscopy, Western blot (WB), nanoparticle tracking analysis, and label-free proteomics.
View Article and Find Full Text PDFExposure to high altitude might cause the body to adapt with negative energy and fluid balance that compromise body composition and physical performance. In this field study involving 12 healthy adults, sex-balanced, and aged 29 ± 4 years with a body mass index of 21.6 ± 1.
View Article and Find Full Text PDFThe application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown.
View Article and Find Full Text PDFGraphene oxide (GO), derived from graphene, has remarkable chemical-physical properties such as stability, strength, and thermal or electric conductivity and additionally shows antibacterial and anti-inflammatory properties. The present study aimed to evaluate the anti-inflammatory effects of polypropylene suture threads buttons (PPSTBs), enriched with two different concentrations of GO, in the modulation of the inflammatory pathway TLR4/MyD 88/NFκB p65/NLRP3 induced by the () lipopolysaccharide (LPS-E). The gene and the protein expression of inflammatory markers were evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by real-time PCR, western blotting, and immunofluorescence analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
The development of novel three-dimensional (3D) nanomaterials combining high biocompatibility, precise mechanical characteristics, electrical conductivity, and controlled pore size to enable cell and nutrient permeation is highly sought after for cardiac tissue engineering applications including repair of damaged heart tissues following myocardial infarction and heart failure. Such unique characteristics can collectively be found in hybrid, highly porous tridimensional scaffolds based on chemically functionalized graphene oxide (GO). By exploiting the rich reactivity of the GO's basal epoxydic and edge carboxylate moieties when interacting, respectively, with NH and NH groups of linear polyethylenimines (PEIs), 3D architectures with variable thickness and porosity can be manufactured, making use of the layer-by-layer technique through the subsequent dipping in GO and PEI aqueous solutions, thereby attaining enhanced compositional and structural control.
View Article and Find Full Text PDFUnlabelled: The aims of the study were: 1) to evaluate the effect on biofilm formation of barrier membranes and titanium surfaces coated with graphene-oxide (GO); 2) to analyze the connection between the superficial topography of the tested materials and the amount of bacterial accumulation on them and 3) to analyze the biocompatibility of GO functionalized discs using the zebrafish model.
Methods: Single species bacterial biofilms (Streptococcus oralis, Veilonella parvula, Fusobacterium nucleatum, Porphyomonas gingivalis) were grown on GO-free membranes, membranes coated with 2 and 10 μg/ml of GO, GO-free and GO-coated titanium discs. The biofilms were analyzed by determining the CFU count and by Scanning Electron Microscopy (SEM) and the materials' topography by Atomic Force Microscopy (AFM).
Many biologically active compounds feature low solubility in aqueous media and, thus, poor bioavailability. The formation of the host-guest complex by using calixarene-based macrocycles (i.e.
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
October 2021
Purpose: The aim of this study was to compare the Streptococcus oralis biofilm formation on titanium machined turned surfaces and sandblasted surfaces that were previously characterized for their superficial topographies.
Materials And Methods: Two commercially pure titanium surfaces were analyzed and compared: machined (turned surfaces subjected to a process of decontamination that also included a double acid attack) and sandblasted (sandblasted surfaces, cleaned with purified water, enzymatic detergent, acetone, and alcohol). The characterization of the samples at the nanolevel was performed using atomic force microscopy, which permitted calculation of the superficial nanoroughness (Ra).
An amphiphilic calix[6]arene, alone or complexed with an axle to form a pseudo-rotaxane, has been embedded into liposomes prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the permeability of the membrane-doped liposomes towards Cl ions has been evaluated by using lucigenin as the fluorescent probe. The pseudo-rotaxane promotes transmembrane transport of Cl ions more than calix[6]arene does. Surprisingly, the quenching of lucigenin was very fast for liposomes doped with the positively charged axle alone.
View Article and Find Full Text PDFHuman dental pulp stem cell (DPSC) differentiation toward the osteoblastic phenotype is enhanced when culture media are supplemented with differentiating factors, i.e. ascorbic acid, β-glycerophosphate and dexamethasone.
View Article and Find Full Text PDFChronic wound management becomes a complex procedure because of the persistence of forming biofilm pathogens that do not respond to antimicrobial treatment. The aim of this paper is to detect the Graphene Oxide-GO effect on Staphylococcus aureus and Pseudomonas aeruginosa dual species wound biofilm in Lubbock Chronic Wound Biofilm-LCWB model. LCWB is a recognized model that mimics the spatial microbial colonization into chronic wounds and reproduces the wound and its clot.
View Article and Find Full Text PDFThe aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition.
View Article and Find Full Text PDFDuring the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods.
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries. Targeted therapies and conventional chemotherapeutics have been developed to help treat this type of aggressive cancer. Among these, the monoclonal antibodies cetuximab (Cxm) and panitumumab specifically target and inactivate the signaling of ERBB1 (EGF receptor), a key player in the development and progression of this cancer.
View Article and Find Full Text PDFBackground: Titanium implant surfaces are continuously modified to improve biocompatibility and to promote osteointegration. Graphene oxide (GO) has been successfully used to ameliorate biomaterial performances, in terms of implant integration with host tissue. The aim of this study is to evaluate the Dental Pulp Stem Cells (DPSCs) viability, cytotoxic response, and osteogenic differentiation capability in the presence of GO-coated titanium surfaces.
View Article and Find Full Text PDFLiposomes loaded with drug–cyclodextrin complexes are widely used as drug delivery systems, especially for species with low aqueous solubility and stability. Investigation of the intimate interactions of macrocycles with liposomes are essential for formulation of efficient and stable drug-in-cyclodextrin-in-liposome carriers. In this work, we reported the preparation of unilamellar vesicles of 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) embedded with native β-cyclodextrin and two synthetic derivatives: heptakis(2,3,6-tri--methyl)-β-cyclodextrin (TMCD) and heptakis(2,3-di--acetyl)-β-cyclodextrin (DACD).
View Article and Find Full Text PDFIn today's radiology workflow, free-text reporting is established as the most common medium to capture, store, and communicate clinical information. Radiologists routinely refer to prior radiology reports of a patient to recall critical information for new diagnosis, which is quite tedious, time consuming, and prone to human error. Automatic structuring of report content is desired to facilitate such inquiry of information.
View Article and Find Full Text PDF