Publications by authors named "Pilar Mancera"

Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-γ).

View Article and Find Full Text PDF

Pharmacological modulation of ATP-sensitive potassium channels has become a promising new therapeutic approach for the treatment of neurodegenerative diseases due to their role in mitochondrial and cellular protection. For instance, diazoxide, a well-known ATP-sensitive potassium channel activator with high affinity for mitochondrial component of the channel has been proved to be effective in animal models for different diseases such as Alzheimer's disease, stroke or multiple sclerosis. Here, we analyzed the ability of diazoxide for protecting neurons front different neurotoxic insults in vitro and ex vivo.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer binding protein δ (C/EBPδ) is expressed in activated astrocytes and microglia and can regulate the expression of potentially detrimental proinflammatory genes. The objective of this study was to determine the role of C/EBPδ in glial activation. To this end, glial activation was analyzed in primary glial cultures and in the central nervous system from wild type and C/EBPδ(-/-) mice.

View Article and Find Full Text PDF

Knowledge of the potential effect of genetic background in disease models is important. The SOD1-G93A transgenic mouse is the most widely used model in amyotrophic lateral sclerosis (ALS). Since these animals show considerable variability both in the onset and the progression of the disease, this study aimed to characterize the potential differences between the two most widely used strains, C56BL/6 (B6) and B6SJL.

View Article and Find Full Text PDF

Background: Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects.

View Article and Find Full Text PDF

Neuroinflammation is thought to play a pathogenic role in many neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). In this study we demonstrate that the expression of nitric oxide (NO) synthase-2 (NOS2), and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) with interferon-γ is higher in microglial-enriched cultures from G93A-SOD1 mice, an ALS animal model, than from wild type mice. The levels of CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor that regulates proinflammatory gene expression, are also upregulated in activated G93A-SOD1 microglial cells.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer binding protein delta (C/EBP delta) regulates transcription of genes that play important roles in glial activation. Previous studies have shown the astroglial expression of C/EBP delta but the microglial expression of C/EBP delta remains virtually unexplored, with the exception of two microarray studies. In this report, using murine primary cultures and BV2 cells we clearly demonstrate that C/EBP delta is expressed by microglia and it is upregulated in microglial activation.

View Article and Find Full Text PDF

The cdk inhibitor p21(Cip1), also named p21(Cip1/Waf1), is intimately involved in coupling growth arrest to cellular differentiation in several cell types. p21(Cip1) is a multifunctional protein that might regulate cell-cycle progression at different levels. In a recent study, we found no differences in the rate of proliferation between glial cells from wild-type and p21(Cip1-/-) mice.

View Article and Find Full Text PDF