While only two members of the bone morphogenetic protein subfamily (BMP-2 and -7) are approved to be used in combination with collagen type I in orthopaedic surgery, other BMPs are known to also be highly osteoinductive. Although all the osteogenic BMPs signal through Smad-1/-5/-8 phosphorylation, they show different preferences for the available BMP receptors. In this work we studied the effect of combining two osteogenic BMPs (-2 and -6), which belong to different groups within the subfamily and have different affinities to the existing BMP receptors.
View Article and Find Full Text PDFAmong the osteogenic growth factors used for bone tissue engineering, bone morphogenetic proteins (BMPs) are the most extensively studied for use in orthopaedic surgery. BMP-2 and BMP-7 have been widely investigated for developing therapeutic strategies and are the only two approved for use in several clinical applications. Due to the chemical and biological characteristics of these molecules, their authorised uses are always in combination with a carrier based on collagen type I.
View Article and Find Full Text PDFSome members of the bone morphogenetic protein subfamily (BMP-2 and -7) are currently used in orthopedic surgery for several applications. Although their use is considered safe at short term, the high doses of growth factors needed make these treatments expensive and their safety uncertain at long term. BMP-6 has been much less studied than BMP-2 and -7, but some authors suggest that this BMP might have a stronger osteogenic activity than the previously mentioned.
View Article and Find Full Text PDFOsteosarcoma is the most common type of malignant bone cancer, accounting for 35% of primary bone malignancies. Because cancer cells utilize glucose as their primary energy substrate, the expression and regulation of glucose transporters (GLUT) may be important in tumor development and progression. GLUT expression has not been studied previously in human osteosarcoma cell lines.
View Article and Find Full Text PDFReparation of bone defects remains a major clinical and economic concern, with more than 3 million bone grafts performed annually only in the United States and the EU. The search for alternatives to autologous bone grafting led to the approval by the FDA of an absorbable collagen carrier combined with rhBMP-2 for the treatment of certain bone diseases and fractures. The present work is focused on the production of a collagen-targeted rhBMP-2 based system to improve bone formation.
View Article and Find Full Text PDF