Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time.
View Article and Find Full Text PDFSignificanceIn the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage.
View Article and Find Full Text PDFTranscription factors must scan genomic DNA, recognize the cognate sequence of their control element(s), and bind tightly to them. The DNA recognition process is primarily carried out by their DNA binding domains (DBD), which interact with the cognate site with high affinity and more weakly with any other DNA sequence. DBDs are generally thought to bind to their cognate DNA without changing conformation (lock-and-key).
View Article and Find Full Text PDFThe Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) is a large multidomain enzyme that catalyzes the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P ) to form PI(3,4)P . PI(3,4,5)P is a key lipid second messenger controlling the recruitment of signaling proteins to the plasma membrane, thereby regulating a plethora of cellular events, including proliferation, growth, apoptosis, and cytoskeletal rearrangements. SHIP2, alongside PI3K and PTEN, regulates PI(3,4,5)P levels at the plasma membrane and has been heavily implicated in serious diseases such as cancer and type 2 diabetes; however, many aspects of its regulation mechanism remain elusive.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is a non-receptor tyrosine kinase with key roles in the regulation of cell adhesion migration, proliferation and survival. In cancer FAK is a major driver of invasion and metastasis and its upregulation is associated with poor patient prognosis. FAK is autoinhibited in the cytosol, but activated upon localisation into a protein complex, known as focal adhesion complex.
View Article and Find Full Text PDFThe full-length ZipA protein from Escherichia coli, one of the essential elements of the cell division machinery, was studied in a surface model built as adsorbed monolayers. The interplay between lateral packing and molecular conformation was probed using a combined methodology based on the scaling analysis of the surface pressure isotherms and ellipsometry measurements of the monolayer thickness. The observed behavior is compatible with the one expected for an intrinsically disordered and highly flexible protein that is preferentially structured in a random coil conformation.
View Article and Find Full Text PDFBacteria divide by forming a contractile ring around their midcell region. FtsZ, a cytoskeletal soluble protein structurally related to tubulin, is the main component of this division machinery. It forms filaments that bundle at the inner side of the cytoplasmic membrane.
View Article and Find Full Text PDFWe have characterized the self-association of FtsZ in its GDP-bound state (GDP-FtsZ) and the heteroassociation of FtsZ and a soluble recombinant ZipA (sZipA) lacking the N-terminal transmembrane domain by means of composition gradient-static light scattering (CG-SLS) and by measurement of sedimentation equilibrium. CG-SLS experiments at high ionic strengths and in the presence of 5 mM Mg(2+) show that, while FtsZ self-associates in a noncooperative fashion, sZipA acts as a monomer. CG-SLS data obtained from mixtures of FtsZ (A) and sZipA (B) in the presence of Mg(2+) are quantitatively described by an equilibrium model that takes into account significant scattering contributions from B, A(1), A(2), A(3), A(4), A(5), A(6), A(1)B, A(2)B, A(3)B, and A(4)B.
View Article and Find Full Text PDFFibroblast growth factors are key proteins in many intercellular signaling networks. They normally remain attached to the extracellular matrix, which confers on them a considerable stability. The unrestrained accumulation of fibroblast growth factors in the extracellular milieu, either due to uncontrolled synthesis or enzymatic release, contributes to the pathology of many diseases.
View Article and Find Full Text PDFFission of many prokaryotes as well as some eukaryotic organelles depends on the self-assembly of the FtsZ protein into a membrane-associated ring structure early in the division process. Different components of the machinery are then sequentially recruited. Although the assembly order has been established, the molecular interactions and the understanding of the force-generating mechanism of this dividing machinery have remained elusive.
View Article and Find Full Text PDF