Publications by authors named "Pilar Gema Rodriguez-Ortega"

The molecular structure and solution-state molecular interactions in the popular non-steroidal anti-inflammatory drug, ketoprofen, are extensively studied with the aim of gaining a better understanding of the chemical behavior of its solution state and its connection to its nucleation pathway and crystallization outcome. Using as reference solid-state X-ray structures of enantiomeric and racemic forms of ketoprofen, a set of self-assembly models underpinned by density functional theory calculations has been considered for the analysis of spectroscopic data, infrared (IR) and vibrational circular dichroism (VCD), obtained for solutions of the samples as a function of composition and solvent. From our results it can be concluded that, contrary to the general belief for generic carboxylic acids, there are no cyclic dimeric structures of ketoprofen present in solution, but rather linear arrays made up of two (in high polar or diluted media) or more units (in low polar or low dilution media).

View Article and Find Full Text PDF

The hydrogen-bond-assisted self-association process of a chiral semirigid carboxylic acid, namely, (+)-(S)-ketopinic acid, has been studied. The multiconformational monomer/dimer equilibrium has been evaluated by means of a concentration-dependent FTIR study that enabled the experimental equilibrium constants of the dimer formation reaction (Kdim ) to be determined in two solvents of different polarity. In CDCl3 , dimeric forms predominate, even in diluted solutions (KdimCF =5.

View Article and Find Full Text PDF

The anomeric effect accounts for the greater thermodynamic stability of axially arranged six-membered heterocycles holding an electronegative substituent at the C1 position. Within a frame of no general consensus, two different theories are typically claimed to justify this effect mostly based on either hyperconjugative or electrostatic factors. Here we report a theoretical-experimental study of the role of both as anomeric triggers in two archetypical 1,4-dioxane derivatives, using a suitable combination of spectroscopic (IR and vibrational circular dichroism) and computational techniques for the analysis of the solvation environment effect in their anomeric choices.

View Article and Find Full Text PDF

We report an extensive study of the molecular and electronic structure of (-)-S-nicotine, to deduce the phenomenon that controls its conformational equilibrium and to solve its solution-state conformer population. Density functional theory, ab initio, and molecular mechanics calculations were used together with vibrational circular dichroism (VCD) and Fourier transform infrared spectroscopies. Calculations and experiments in solution show that the structure and the conformational energy profile of (-)-S-nicotine are not strongly dependent on the medium, thus suggesting that the conformational equilibrium is dominated by hyperconjugative interactions rather than repulsive electronic effects.

View Article and Find Full Text PDF

The development of protease's inhibitors is an active field of research in the pharmaceutical industry. As concerns the design of new inhibitors, the theoretical study of the binding patterns and energies of known metal binding groups (MBGs) toward Zn(2+) using quantum-chemical calculations may offer a better understanding of their interaction models and may be useful for the improvement and design of novel ZBGs. Here the properties of gem-Ge(OH)(2)-based compounds as ZBG were assessed theoretically using DFT calculations.

View Article and Find Full Text PDF

DFT (B3LYP and M06L) as well as ab initio (MP2) methods with Dunning cc-pVnZ (n=2,3) basis sets are employed for the study of the binding ability of the new class of protease inhibitors, i.e., silanediols, in comparison to the well-known and well-studied class of inhibitors with hydroxamic functionality (HAM).

View Article and Find Full Text PDF

Activation barrier heights for the dehydration reaction of geminal carbinols and silanediols R'R″X(OH)(2) (X = C, Si) were estimated at the B3LYP and MP2 levels of theory employing Dunning's correlation-consistent triple-zeta basis sets. It was shown that the barrier height for carbon derivatives steadily decreases upon substitution by R groups, usually termed as electron-donating, such as alkyl and amino groups. Substitution by electron-withdrawing groups leads, however, only to small changes in barrier heights compared to that of methanediol.

View Article and Find Full Text PDF