Publications by authors named "Pilar Garcia Morales"

Despite advances in the detection of biomarkers and in the design of drugs that can slow the progression of Alzheimer's disease (AD), the underlying primary mechanisms have not been elucidated. The diagnosis of AD has notably improved with the development of neuroimaging techniques and cerebrospinal fluid biomarkers which have provided new information not available in the past. Although the diagnosis has advanced, there is a consensus among experts that, when making the diagnosis in a specific patient, many years have probably passed since the onset of the underlying processes, and it is very likely that the biomarkers in use and their cutoffs do not reflect the true critical points for establishing the precise stage of the ongoing disease.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC), is the most common aggressive cancer of the pancreas. The standard care of PDAC includes tumor resection and chemotherapy, but the lack of early diagnosis and the limited response to the treatment worsens the patient's condition. In order to improve the efficiency of chemotherapy, we look for more efficient systems of drug delivery.

View Article and Find Full Text PDF

Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients.

View Article and Find Full Text PDF

The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions.

View Article and Find Full Text PDF

D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating HO. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO.

View Article and Find Full Text PDF

We have determined the effects of the IGF-1R tyrosine kinase inhibitors BMS-754807 (BMS) and OSI-906 (OSI) on cell proliferation and cell-cycle phase distribution in human colon, pancreatic carcinoma, and glioblastoma cell lines and primary cultures. IGF-1R signaling was blocked by BMS and OSI at equivalent doses, although both inhibitors exhibited differential antiproliferative effects. In all pancreatic carcinoma cell lines tested, BMS exerted a strong antiproliferative effect, whereas OSI had a minimal effect.

View Article and Find Full Text PDF

The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis.

View Article and Find Full Text PDF

D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids generating hydrogen peroxide, a potential producer of reactive oxygen species. In this study, we used a CLytA-DAAO chimera, both free and bound to magnetic nanoparticles, against colon carcinoma, pancreatic adenocarcinoma, and glioblastoma cell lines. We found that the enzyme induces cell death in most of the cell lines tested and its efficiency increases significantly when it is immobilized in nanoparticles.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a poor prognosis type of tumour due to its resistance to chemo and radiotherapy. SOCS1 and SOCS3 have been associated with tumour progression and response to treatments in different kinds of cancers, including GBM. In this study, cell lines of IDH-wildtype GBM from primary cultures were obtained, and the role of SOCS1 and SOCS3 in the radiotherapy response was analysed.

View Article and Find Full Text PDF

Background: Assessment of hippocampal amnesia is helpful to distinguish between normal cognition and mild cognitive impairment (MCI), but not for identifying converters to dementia. Here biomarkers are useful but novel neuropsychological approaches are needed in their absence. The In-out-test assesses episodic memory using a new paradigm hypothesized to avoid reliance on executive function, which may compensate for damaged memory networks.

View Article and Find Full Text PDF

Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment.

View Article and Find Full Text PDF

Background: Colorectal carcinoma is a common cause of cancer. Adjuvant treatments include: 5-fluorouracil administered together with folinic acid, or more recently, oral fluoropyrimidines such as capecitabine, in combination with oxaliplatin or irinotecan. Metastatic colorectal cancer patients can benefit from other additional treatments such as cetuximab or bevacizumab.

View Article and Find Full Text PDF

Unlabelled: The use of heat shock protein 90 (Hsp90) inhibitors is an attractive antineoplastic therapy. We wanted to compare the effects of the benzoquinone 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) and the novel isoxazole resorcinol-based Hsp90 inhibitor NVP-AUY922 in a panel of pancreatic and colorectal carcinoma cell lines and in colorectal primary cultures derived from tumors excised to patients. PANC-1, CFPAC-1, and Caco-2 cells were intrinsically resistant to 17-AAG but sensitive to NVP-AUY922.

View Article and Find Full Text PDF

Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells.

View Article and Find Full Text PDF

Background: It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein.

View Article and Find Full Text PDF

Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G(1) arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G(1) arrest.

View Article and Find Full Text PDF

Previous studies have documented that while several drug-resistant cells enter apoptosis upon treatment with histone deacetylase inhibitors (iHDACs), their drug-sensitive counterparts do not. In the present study, we have investigated at the molecular level why parental drug-sensitive tumor cells do not respond to Trichostatin A and suberoylanilide hydroxamic acid, two iHDACs that promote apoptosis in drug-resistant leukaemia cells. Taking murine leukaemia L1210 cells as a model, we have determined that: (i) PKC-alpha expression is more elevated in parental L1210 than in drug-resistant L1210/R cells, (ii) activation of PKC neutralizes iHDACs-mediated apoptosis in L1210/R cells, (iii) depletion of PKC in parental L1210 cells results in a positive response to iHDACs-mediated apoptosis, and (iv) transfection of a mutant constitutively active PKC-alpha form in L1210/R cells makes the cells refractory to apoptosis induction by iHDACs.

View Article and Find Full Text PDF

The present study of inhibitors shows that the histone deacetylase-induced increase in P-glycoprotein (Pgp) mRNA (MDR1 mRNA) does not parallel either an increase in Pgp protein or an increase in Pgp activity in several colon carcinoma cell lines. Furthermore, studying the polysome profile distribution, we show a translational control of Pgp in these cell lines. In addition, we show that the MDR1 mRNA produced in these cell lines is shorter in its 5' end that the MDR1 mRNA produced in the MCF-7/Adr (human breast carcinoma) and K562/Adr (human erythroleukemia) cell lines, both of them expressing Pgp.

View Article and Find Full Text PDF

Resistance to chemotherapeutic drugs presents a big caveat for cancer treatment. In this review we will describe the molecular mechanisms involved in chemoresistance, discussing the mechanisms of resistance related to tumour microenvironment, as well as their intracellular mechanisms. Chemoresistance can also appear as a consequence to treatments with new anticancer drugs.

View Article and Find Full Text PDF

Rapamycin and its analogues are being tested as new antitumor agents. Rapamycin binds to FKBP-12 and this complex inhibits the activity of FRAP/mammalian target of rapamycin, which leads to dephosphorylation of 4EBP1 and p70 S6 kinase, resulting in blockade of translation initiation. We have found that RAP inhibits the growth of HER-2-overexpressing breast cancer cells.

View Article and Find Full Text PDF

The antitumor activity of the histone deacetylase inhibitors was tested in three well-characterized pancreatic adenocarcinoma cell lines, IMIM-PC-1, IMIM-PC-2, and RWP-1. These cell lines have been previously characterized in terms of their origin, the status of relevant molecular markers for this kind of tumor, resistance to other antineoplastic drugs, and expression of differentiation markers. In this study, we report that histone deacetylase inhibitors induce apoptosis in pancreatic cancer cell lines, independently of their intrinsic resistance to conventional antineoplastic agents.

View Article and Find Full Text PDF

It is well established that the effectiveness of anticancer drugs may result from combined cytotoxic and differentiation activities on tumor cells. Also, differentiating agents are able to alter the susceptibility of cancer cells to antineoplastic drug therapy. However, the acquisition and/or development of drug resistance that frequently appears in anticancer treatment can impair these interactions between differentiation agents and cytotoxic drugs.

View Article and Find Full Text PDF

The main goal of our study has been to analyze the efficiency of new anticancer drugs, specifically histone deacetylase inhibitors, in tumor cells bearing a multidrug resistance phenotype. We report that the histone deacetylase inhibitors, Trichostatin A and Suberoylanilide Hydroxamic Acid (SAHA), dramatically reduce cell viability and promote apoptosis in different drug-resistant cells, affecting in a much lesser extent to their parental drug-sensitive counterparts. The differential effects induced by Trichostatin A and SAHA between drug-sensitive and drug-resistant cells are reflected on the main characteristics of the resistant phenotype.

View Article and Find Full Text PDF