Publications by authors named "Pilar Bulacio"

Nucleic-acid barcoding is an enabling technique for many applications, but its use remains limited in emerging long-read sequencing technologies with intrinsically low raw accuracy. Here, we apply so-called NS-watermark barcodes, whose error correction capability was previously validated in silico, in a proof of concept where we synthesize 3840 NS-watermark barcodes and use them to asymmetrically tag and simultaneously sequence amplicons from two evolutionarily distant species (namely Bordetella pertussis and Drosophila mojavensis) on the ONT MinION platform. To our knowledge, this is the largest number of distinct, non-random tags ever sequenced in parallel and the first report of microarray-based synthesis as a source for large oligonucleotide pools for barcoding.

View Article and Find Full Text PDF

The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks.

View Article and Find Full Text PDF

Single nucleotide variants (SNVs) occurring in a protein coding gene may disrupt its function in multiple ways. Predicting this disruption has been recognized as an important problem in bioinformatics research. Many tools, hereafter p-tools, have been designed to perform these predictions and many of them are now of common use in scientific research, even in clinical applications.

View Article and Find Full Text PDF

The GO-Cellular Component (GO-CC) ontology provides a controlled vocabulary for the consistent description of the subcellular compartments or macromolecular complexes where proteins may act. Current machine learning-based methods used for the automated GO-CC annotation of proteins suffer from the inconsistency of individual GO-CC term predictions. Here, we present FGGA-CC, a class of hierarchical graph-based classifiers for the consistent GO-CC annotation of protein coding genes at the subcellular compartment or macromolecular complex levels.

View Article and Find Full Text PDF

Motivation: To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed.

Results: We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing.

View Article and Find Full Text PDF

As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships.

View Article and Find Full Text PDF

For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability.

View Article and Find Full Text PDF

Background: Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbop1h5gosh4aq2kpm0lmrtmpi0ap8e6t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once