The homogeneous dispersion of carbon nanotubes (CNTs) in a rubber matrix is a key factor limiting their amazing potential. CNTs tend to agglomerate into bundles due to van der Waals interactions. To overcome this limitation, CNTs have been surface-modified with oxygen-bearing groups and sulfur.
View Article and Find Full Text PDFThe tire industry needs to become more sustainable to reduce pollution and fight climate change. Replacing fossil ingredients in a tire-tread compound with bio-based alternatives is an approach to create a more sustainable product. For instance, the plasticizer can be replaced, which is a petroleum-based ingredient used in relatively high amounts in the rubber.
View Article and Find Full Text PDFShape-memory polymers tend to present rigid behavior at ambient temperature, being unable to deform in this state. To obtain soft shape-memory elastomers, composites based on a commercial rubber crosslinked by both ionic and covalent bonds were developed, as these materials do not lose their elastomeric behavior below their transition (or activation) temperature (using ionic transition for such a purpose). The introduction of fillers, such as carbon black and multiwalled carbon nanotubes (MWCNTs), was studied and compared with the unfilled matrix.
View Article and Find Full Text PDFThe outstanding properties of carbon nanotubes (CNTs) present some limitations when introduced into rubber matrices, especially when these nano-particles are applied in high-performance tire tread compounds. Their tendency to agglomerate into bundles due to van der Waals interactions, the strong influence of CNT on the vulcanization process, and the adsorptive nature of filler-rubber interactions contribute to increase the energy dissipation phenomena on rubber-CNT compounds. Consequently, their expected performance in terms of rolling resistance is limited.
View Article and Find Full Text PDFThe main advantages of the use of silica instead of carbon black in rubber compounds are based on the use of a silane coupling agent. The use of a coupling agent to modify the silica surface improves the compatibility between the silica and the rubber. There are two different possibilities of modifying the silica surface by silane: ex-situ and in-situ.
View Article and Find Full Text PDFThe major controlling factors that determine the various mechanical properties of an elastomer system are type of chemical crosslinking and crosslink density of the polymer network. In this study, a catalytic amount of acrylonitrile butadiene copolymer (NBR) was used as a co-accelerator for the curing of polybutadiene (BR) elastomer. After the addition of this copolymer along with other conventional sulphur ingredients in polybutadiene compounds, a clear and distinct effect on the curing and other physical characteristics was noticed.
View Article and Find Full Text PDFShape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers.
View Article and Find Full Text PDF