Black rice (BR) extract contains several functional food bioactive components that are health-promoting. This study assessed the multifunctional bioactivities of various BR extracts (methanol, ethanol, acetone, and aqueous). These BR extracts revealed significant antioxidant and antibacterial activity against various bacterial strains.
View Article and Find Full Text PDFLeptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling.
View Article and Find Full Text PDFObesity has been known to negatively modulate the life-span and immunosuppressive potential of mesenchymal stromal cells (MSC). However, it remains unclear what drives the compromised potency of obese MSC. In this study, we examined the involvement of adiponectin, an adipose tissue-derived hormone, in obesity-induced impaired therapeutic function of MSC.
View Article and Find Full Text PDFLeptin, an adipose tissue-derived hormone, exhibits potent tumor promoting effects through various mechanisms. Cathepsin B, a member of the lysosomal cysteine proteases, has been shown to modulate the growth of cancer cells. In this study, we have investigated the role of cathepsin B signaling in leptin-induced hepatic cancer growth.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC) has been proven to better preserve their in vivo functional properties.
View Article and Find Full Text PDFDietary restriction through low-calorie intake or intermittent fasting benefits many organs, including the brain. This study investigated the neuroprotective effects of fasting in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. We found that fasting every other day rather than weekly increased the levels of brain-derived neurotrophic factor and glial-derived neurotrophic factor in the nigrostriatal pathway.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δ range of 9.
View Article and Find Full Text PDFImmunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic--glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice.
View Article and Find Full Text PDFGenetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the gene ( mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear.
View Article and Find Full Text PDFThis study attempted to discover tetralone-derived potent ROS inhibitors by synthesizing sixty-six hydroxylated and halogenated 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones via Claisen-Schmidt condensation reaction. The majority of the synthesized and investigated compounds significantly inhibited ROS in LPS-stimulated RAW 264.7 macrophages.
View Article and Find Full Text PDFIn this work, fungal mushroom-derived carboxymethyl chitosan-polydopamine hydrogels (FCMCS-PDA) with multifunctionality (tissue adhesive, hemostasis, self-healing, and antibacterial properties) were developed for wound dressing applications. The hydrogel is obtained through dynamic Schiff base cross-linking and hydrogen bonds between FCMCS-PDA and covalently cross-linked polyacrylamide (PAM) networks. The FCMCS-PDA-PAM hydrogels have a good swelling ratio, biodegradable properties, excellent mechanical properties, and a highly interconnected porous structure with PDA microfibrils.
View Article and Find Full Text PDFRaloxifene, a selective estrogen receptor (ER) modulator, has been reported to exert the tumor-suppressive effects in both ER-positive and ER-negative cancer cells; however, the mechanisms underlying its ER-independent anti-cancer effects are poorly understood. The NLRP3 inflammasome, a critical component of the innate immune system, has recently received growing attention owing to its multifaceted roles in various aspects of cancer development. The present study aimed at examining the involvement of NLRP3 inflammasomes in the anti-breast cancer effects of raloxifene and its underlying mechanisms.
View Article and Find Full Text PDFRecently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2022
Background: Adiponectin, the most abundant adipokine derived from adipose tissue, exhibits a potent suppressive effect on the growth of breast cancer cells; however, the underlying molecular mechanisms for this effect are not completely understood. Fatty acid metabolic reprogramming has recently been recognized as a crucial driver of cancer progression. Adiponectin demonstrates a wide range of metabolic activities for the modulation of lipid metabolism under physiological conditions.
View Article and Find Full Text PDFLeptin, a hormone that is predominantly produced by adipose tissue, is closely associated with various liver diseases. However, there is a lack of understanding as to whether leptin directly induces cytotoxic effects in hepatocytes as well as the mechanisms that are involved. Inflammasomes, which are critical components in the innate immune system, have been recently shown to modulate cell death.
View Article and Find Full Text PDFAdiponectin, an adipose tissue-derived hormone, exhibits a modulatory effect on cell death/survival and possesses potent anti-inflammatory properties. However, the underlying molecular mechanisms remain elusive. Sestrin2, a stress-inducible metabolic protein, has shown cytoprotective and inflammation-modulatory effects under stressful conditions.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals.
View Article and Find Full Text PDFAdiposity is associated with an increased risk of various types of carcinoma. One of the plausible mechanisms underlying the tumor-promoting role of obesity is an aberrant secretion of adipokines, a group of hormones secreted from adipose tissue, which have exhibited both oncogenic and tumor-suppressing properties in an adipokine type- and context-dependent manner. Increasing evidence has indicated that these adipose tissue-derived hormones differentially modulate cancer cell-specific metabolism.
View Article and Find Full Text PDFLeptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin-induced growth of breast cancer cells.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated.
View Article and Find Full Text PDFAberrant production of adipokines, a group of adipocytes-derived hormones, is considered one of the most important pathological characteristics of obesity. In individuals with obesity, beneficial adipokines, such as adiponectin are downregulated, whereas leptin and other pro-inflammatory adipokines are highly upregulated. Hence, the imbalance in levels of these adipokines is thought to promote the development of obesity-linked complications.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to a decrease in striatal dopamine. There is no antiparkinsonian therapy that offers a true disease-modifying treatment till date and there is an urgent need for a safe and effective neuroprotective or neurorestorative therapy. Our previous study demonstrated that metformin upregulated dopamine in the mouse brain and provided significant neuroprotection in animal model of PD.
View Article and Find Full Text PDF