Publications by authors named "Pikula M"

The natural healing process of cartilage injuries often fails to fully restore the tissue's biological and mechanical functions. Cartilage grafts are costly and require surgical intervention, often associated with complications such as intraoperative infection and rejection by the recipient due to ischemia. Novel tissue engineering technologies aim to ideally fill the cartilage defect to prevent disease progression or regenerate damaged tissue.

View Article and Find Full Text PDF

Cancers are part of the group of diseases that carry a high mortality rate. According to World Health Organization in 2020 reported 10 million deaths due to cancers. Treatment of oncological patients is focused on chemotherapeutic agents, radiology, or immunology.

View Article and Find Full Text PDF

This study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan-agarose composites in a unidirectional bench press simulation test.

View Article and Find Full Text PDF

Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro.

View Article and Find Full Text PDF

Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established.

View Article and Find Full Text PDF

Epidermal stem cells, located in the skin, together with keratinocytes are transplanted in regenerative therapies, e.g., for the treatment of burns or other wounds.

View Article and Find Full Text PDF

This study introduces a method for producing printable, thermosensitive bioink formulated from agarose (AG) and carbon dioxide-saturated chitosan (CS) hydrogels. The research identified medium molecular weight chitosan as optimal for bioink production, with a preferred chitosan hydrogel content of 40-60 %. Rheological analysis reveals the bioink's pseudoplastic behavior and a sol-gel phase transition between 27.

View Article and Find Full Text PDF

Poor fluorescence recovery at low analyte dosages and slow ligand binding kinetics are critical challenges currently limiting the use of aptamer-functionalized hydrogels for sensing small molecules. In this paper, we report an adenosine-responsive hydrogel sensor that integrates FRET-signaling aptamer switches into in situ-gelling thin-film hydrogels. The hydrogel sensor is able to entrap a high proportion of the sensing probes (>70% following vigorous washing), delay nucleolytic degradation, stabilize weak aptamer complexes to improve hybridization affinity and suppress fluorescence background, and provide high sensitivity in biological fluids (i.

View Article and Find Full Text PDF

Non-healing wounds and skin losses constitute significant challenges for modern medicine and pharmacology. Conventional methods of wound treatment are effective in basic healthcare; however, they are insufficient in managing chronic wound and large skin defects, so novel, alternative methods of therapy are sought. Among the potentially innovative procedures, the use of skin substitutes may be a promising therapeutic method.

View Article and Find Full Text PDF

Background: One of the leading current trends in technology is the miniaturization of devices to the microscale and nanoscale. The highly advanced approaches are based on biological systems, subjected to bioengineering using chemical, enzymatic and recombinant methods. Here we have utilised the biological affinity towards cellulose of the cellulose binding domain (CBD) fused with recombinant proteins.

View Article and Find Full Text PDF

Augmented reality technology has been introduced during recent years into everyday clinical practice. Several surgical specialties have begun using such technology for preoperative planning as well as intraoperatively. Regarding vascular surgery, a limited number of reports have described the benefits, mainly for endovascular procedures.

View Article and Find Full Text PDF

Chemotherapy is a primary method to treat cancer. While chemotherapeutic drugs are designed to target rapidly dividing cancer cells, they can also affect other cell types. In the case of dermal cells and macrophages involved in wound healing, cytotoxicity often leads to the development of chronic wounds.

View Article and Find Full Text PDF

Wound healing complications affect numerous patients each year, creating significant economic and medical challenges. Currently, available methods are not fully effective in the treatment of chronic or complicated wounds; thus, new methods are constantly sought. Our previous studies showed that a peptide designated as PDGF2 derived from PDGF-BB could be a promising drug candidate for wound treatment and that RADA16-I can serve as a release system for bioactive peptides in wound healing.

View Article and Find Full Text PDF

Endothelial cells are a preferential target for SARS-CoV-2 infection. Previously, we have reported that vascular adenosine deaminase 1 (ADA1) may serve as a biomarker of endothelial activation and vascular inflammation, while ADA2 plays a critical role in monocyte and macrophage function. In this study, we investigated the activities of circulating ADA isoenzymes in patients 8 weeks after mild COVID-19 and related them to the parameters of inflammation and microvascular/endothelial function.

View Article and Find Full Text PDF

Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering.

View Article and Find Full Text PDF

Introduction: Chronic wounds are an increasing problem for health care all over the world. New treatment options for this illness are desired, especially antimicrobial agents. Silver nanoparticles (AgNPs) can be a potential substance that may be used in treatment of chronic wounds due to the growing antibiotic resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Filaggrin (FLG) protein is crucial for maintaining the skin's barrier, but its buildup in a single form can lead to early cell death in skin cells (keratinocytes).
  • The study finds that small extracellular vesicles (sEVs) secreted by keratinocytes carry filaggrin and help remove excess levels, as blocking these vesicles causes cell damage.
  • S. aureus bacteria boost the packaging and release of filaggrin-related substances in sEVs through a specific mechanism, which may help the bacteria survive by promoting filaggrin removal from the skin.
View Article and Find Full Text PDF

Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR.

View Article and Find Full Text PDF

Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities.

View Article and Find Full Text PDF

DNA methyltransferase inhibitor zebularine was proven to induce regeneration in the ear pinna in mice. We utilized a dorsal skin wound model to further evaluate this epigenetic inhibitor in wound healing. Full-thickness excisional wounds were made on the dorsum of 2 and 10-month-old healthy BALB/c and 3 and 8-month-old diabetic (db/db) mice, followed by topical or intraperitoneal zebularine delivery.

View Article and Find Full Text PDF

infection is a potential complication in the individuals with atopic dermatitis (AD) and can affect clinical course of the disease. Here, using primary keratinocytes we determined that atopic promotes changes in the interaction of small extracellular vesicles (sEVs) with dendritic cells and that this is further enhanced by the presence of . sEV uptake is largely dependent on the expression of glycans on their surface; modelling of the protein interactions indicated that recognition of this pathogen through -relevant pattern recognition receptors (PRRs) is linked to several glycosylation enzymes which may in turn affect the expression of sEV glycans.

View Article and Find Full Text PDF

The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life.

View Article and Find Full Text PDF

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions.

View Article and Find Full Text PDF

The alarming raise of multi-drug resistance among human microbial pathogens makes the development of novel therapeutics a priority task. In contrast to conventional antibiotics, antimicrobial peptides (AMPs), besides evoking a broad spectrum of activity against microorganisms, could offer additional benefits, such as the ability to neutralize toxins, modulate inflammatory response, eradicate bacterial and fungal biofilms or prevent their development. The latter properties are of special interest, as most antibiotics available on the market have limited ability to diffuse through rigid structures of biofilms.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemic stroke disrupts blood flow to the brain, leading to damage due to lack of oxygen, and the study developed a lab model using rat neural cells to explore potential treatments.
  • Researchers tested two cell-penetrating peptides, Tat(49-57)-NH and PTD4, to see how they help neurons survive under stress conditions like glucose deprivation and oxidative stress, finding that PTD4 was more effective.
  • The study revealed that the effectiveness of PTD4 in protecting neurons was linked to its ability to form a helical structure, which improves its ability to enter cells, suggesting it could be a promising candidate for developing new stroke treatments.
View Article and Find Full Text PDF