Combining electroencephalogram (EEG) and functional MRI (fMRI) allows localization of brain regions activated as a result of epileptic spikes. The statistical analysis of fMRI data usually includes a standard model of the hemodynamic response function (HRF) but it is not known how well this fits the actual HRF of epileptic spikes. The objective of this exploratory study was to compare the activated areas and t-statistical scores obtained with a standard HRF to those obtained with a patient-specific HRF.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2003
Purpose: To investigate the dependence of occipital gray and white matter T(2) on the Carr-Purcell-Meiboom-Gill (CPMG) refocusing interval, thereby testing the basis of a novel functional magnetic resonance imaging (fMRI) method for blood volume quantification, and addressing recent questions surrounding T(2) contrast in the occipital lobe.
Materials And Methods: A CPMG sequence with 1 x 1 x 5 mm(3) resolution was used to quantify T(2) in a single axial slice at the midlevel of the occipital lobe in 23 healthy adult volunteers. Refocusing intervals of 8, 11, and 22 msec were compared.
The clinical course of multiple sclerosis (MS) is highly variable ranging from benign to aggressive, and is difficult to predict. Since magnetization transfer (MT) imaging can detect focal abnormalities in normal-appearing white matter (NAWM) before the appearance of lesions on conventional MRI, we hypothesized that changes in MT might be able to predict the clinical evolution of MS. We assessed MR data from MS patients who were subsequently followed clinically for 5 years.
View Article and Find Full Text PDFObject: Renewed interest in stereotactic neurosurgery for movement disorders has led to numerous reports of clinical outcomes associated with different treatment strategies. Nevertheless, there is a paucity of autopsy and imaging data that can be used to describe the optimal size and location of lesions or the location of implantable stimulators. In this study the authors correlated the clinical efficacy of stereotactic thalamotomy for tremor with precise anatomical localization by using postoperative magnetic resonance (MR) imaging and an integrated deformable digital atlas of subcortical structures.
View Article and Find Full Text PDFIt has been argued that saccade generation is supported by two systems, a'where' system that decides the direction and extent of an impending saccade, and a 'when' system that is involved in the timing of the release of fixation. We evaluated the contributions of these systems to saccade latencies, and used functional MRI to identify the neural substrates of these systems. We found that advance knowledge of the direction and the timing of an impending target movement had both overlapping and discrete effects on saccade latencies and on neural activation.
View Article and Find Full Text PDFThe present study examined the role of the prefrontal cortex in retrieval processing using functional magnetic resonance imaging in human subjects. Ten healthy subjects were scanned while they performed a task that required retrieval of specific aspects of visual information. In order to examine brain activity specifically associated with retrieval, we designed a task that had retrieval and control conditions that were perfectly matched in terms of depth of encoding, decision making and postretrieval monitoring and differed only in terms of whether retrieval was required.
View Article and Find Full Text PDFMagn Reson Med
November 2001
We describe a novel imaging technique that yields all of the observable properties of the binary spin-bath model for magnetization transfer (MT) and demonstrate this method for in vivo studies of the human head. Based on a new model of the steady-state behavior of the magnetization during a pulsed MT-weighted imaging sequence, this approach yields parametric images of the fractional size of the restricted pool, the magnetization exchange rate, the T(2) of the restricted pool, as well as the relaxation times in the free pool. Validated experimentally on agar gels and samples of uncooked beef, we demonstrate the method's application on two normal subjects and a patient with multiple sclerosis.
View Article and Find Full Text PDFJ Chem Neuroanat
July 2001
Recent years have witnessed a great growth of interest in non-invasive imaging methods, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), permitting identification of brain structures that mediate specific cognitive and behavioural tasks in humans. Because these techniques use physiological responses such as increased perfusion or metabolism as surrogate indicators of evoked neuronal electrical activity, understanding the role of these processes in sustaining the information processing function of neurons is vital to the proper interpretation of functional neuroimaging data. An ultimate goal of these non-invasive techniques is to approach the sensitivity and spatial resolution of earlier autoradiographic methods, which have repeatedly demonstrated exquisitely detailed delineations of neuronal response patterns using metabolic glucose uptake as a physiological tag.
View Article and Find Full Text PDFIn many patients, focal cortical dysplasia (FCD) is characterized by minor structural changes that may go unrecognized by standard radiological analysis. To increase the sensitivity of magnetic resonance imaging (MRI) for the detection of subtle lesions of FCD, we developed voxel-based image postprocessing methods, including first-order texture analysis and morphological processing modeled on known MRI features of FCD. We selected 16 patients with histologically proven FCD.
View Article and Find Full Text PDFTo further our understanding of the cortical deficit in strabismic amblyopia, we measured, compared and mapped functional magnetic resonance imaging (fMRI) activation between the fixing and fellow amblyopic eyes of ten strabismic amblyopes. Of specific concern was whether the function of any visual area was spared in strabismic amblyopia, as recently suggested by both positron emission tomography (PET) and fMRI studies, and whether there was a close relationship between the fMRI response and known psychophysical deficits. To answer these questions we measured the psychophysical deficit in each subject and used stimuli whose relationship to the psychophysical deficit was known.
View Article and Find Full Text PDFA novel child-oriented procedure was used to examine the face-recognition abilities of children as young as 2 years. A recognition task was embedded in a picture book containing a story about two boys and a witch. The story and the task were designed to be entertaining for children of a wide age range.
View Article and Find Full Text PDFBackground And Purpose: A preliminary report suggested that magnetization transfer ratio (MTR) was useful to lateralize epileptic foci in patients with refractory temporal lobe epilepsy (TLE). We attempted to confirm this finding in a larger group by investigating the relationship between MTR of mesial temporal structures and seizure lateralization in patients with refractory TLE.
Methods: We compared the MTR of amygdalae and hippocampi of 10 patients with unilateral TLE to values obtained from 10 healthy control participants.
IEEE Trans Med Imaging
July 2000
Magnetic resonance imaging using the echo planar imaging (EPI) technique is particularly sensitive to main (B0) field inhomogeneities. The primary effect is geometrical distortion in the phase encoding direction. In this paper, we present a method based on the conjugate gradient algorithm to correct for this geometrical distortion, by solving the EPI imaging equation.
View Article and Find Full Text PDFA method for analyzing general pulsed magnetization transfer (MT) experiments in which off-resonance saturation pulses are interleaved with on-resonance excitation pulses is presented. We apply this method to develop a steady-state signal equation for MT-weighted spoiled gradient echo sequences and consider approximations that facilitate its rapid computation. Using this equation, we assess various experimental designs for quantitatively imaging the fractional size of the restricted pool, cross-relaxation rate, and T(1) and T(2) relaxation times of the two pools in a binary spin bath system.
View Article and Find Full Text PDFPurpose: To determine the evolution of magnetization transfer (MT) in white matter regions before and after plaque development in patients with multiple sclerosis (MS).
Materials And Methods: In a 5-year longitudinal evaluation, 30 patients with MS underwent conventional magnetic resonance (MR) imaging, MT MR imaging, and clinical assessment. Cross-sectional data in 12 healthy subjects were also collected.
Magn Reson Med
April 2000
A new method is described for compensating for the bias introduced by variations in radiofrequency (RF) field strength and main magnetic field strength when making quantitative T(2) measurements using MRI. Field measurements made during the MRI study are used in combination with a signal model for off-resonance and imperfect RF pulses to correct the estimated T(2) value at every voxel. Applicable to both multicomponent and conventional single-component T(2) studies, the method has been validated experimentally using paramagnetic salt solutions in a multicompartment phantom.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 1999
With the increased interest in computer-aided image analysis methods, there is a greater need for objective methods of algorithm evaluation. Validation of in vivo MRI studies is complicated by a lack of reference data and the difficulty of constructing anatomically realistic physical phantoms. We present here an extensible MRI simulator that efficiently generates realistic three-dimensional (3-D) brain images using a hybrid Bloch equation and tissue template simulation that accounts for image contrast, partial volume, and noise.
View Article and Find Full Text PDFA patient was followed after the new onset of hemiparesis from relapse of MS with serial MR spectroscopy and functional MRI. The association of clinical improvement with recovery of N-acetylaspartate, a marker of neuronal integrity, and progressive reduction of abnormally large functional MRI cortical activation with movement demonstrates that dynamic reorganization of the motor cortex accompanies remission of MS.
View Article and Find Full Text PDFObject: Accurate identification of eloquent cortex is important to ensure that resective surgery in the region surrounding the central sulcus is performed with minimum risk of permanent neurological deficit. Functional localization has traditionally been accomplished using intraoperative cortical stimulation (ICS). However, this technique suffers from several disadvantages that make the development and validation of noninvasive methods desirable.
View Article and Find Full Text PDFThe relationship between blood oxygenation level-dependent (BOLD) MRI signals, cerebral blood flow (CBF), and oxygen consumption (CMR(O2)) in the physiological steady state was investigated. A quantitative model, based on flow-dependent dilution of metabolically generated deoxyhemoglobin, was validated by measuring BOLD signals and relative CBF simultaneously in the primary visual cortex (V1) of human subjects (N = 12) during graded hypercapnia at different levels of visual stimulation. BOLD and CBF responses to specific conditions were averaged across subjects and plotted as points in the BOLD-CBF plane, tracing out lines of constant CMR(O2).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1999
The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMR(O(2))) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1 neurons. Primary visual cortex was delineated individually in each subject by using phase-encoded retinotopic mapping.
View Article and Find Full Text PDFBackground And Purpose: Conventional MR imaging of multiple sclerosis (MS) provides relatively poor pathologic specificity, which has led to the investigation of more sophisticated MR techniques. The purpose of this study was to combine magnetization transfer (MT) imaging and proton MR spectroscopic imaging (MRSI) to evaluate the specific pathologic features of myelination and neuronal integrity in patients with MS and to determine the relationship between these measures within plaques.
Methods: We acquired conventional MR, MT, and proton MRSI data and evaluated clinical disability in 30 patients with MS, whose conditions were categorized as relapsing-remitting, primary progressive, or secondary progressive.
Blood oxygenation level-dependent (BOLD) fMRI signals often exhibit pronounced over- or undershoot upon changes in stimulation state. Current models postulate that this is due to the delayed onset or decay of perfusion-dependent attenuating responses such as increased cerebral blood volume or oxygen consumption, which are presumed to lag behind the rapid adjustment of blood flow rate to a new steady-state level. If this view is correct, then BOLD overshoot amplitudes in a specific tissue volume should be correlated with steady-state increases in perfusion, independent of stimulus type.
View Article and Find Full Text PDFBackground: In the operative management of gastro-oesophageal reflux, a balance must be achieved between adequate control of reflux and excessive dysphagia. The ideal technique is not known. A randomized study was performed to determine whether laparoscopic anterior fundoplication is associated with a lower incidence of postoperative dysphagia than laparoscopic Nissen fundoplication, while achieving equivalent control of reflux.
View Article and Find Full Text PDFFor perfusion-based functional magnetic resonance imaging, the previously introduced flow-sensitive alternating inversion recovery (FAIR) technique is combined with single-shot RARE (rapid acquisition with relaxation enhancement) and GRASE (gradient and spin echo) imaging sequences. The advantages of these sequences compared to commonly used echo-planar imaging (EPI) are an increased signal-to-noise ratio and the absence of distortions and artifacts due to magnetic field inhomogeneities. RARE- and GRASE-FAIR are applied to functional brain mapping studies in humans during visual stimulation.
View Article and Find Full Text PDF