Publications by authors named "Pijun Wang"

Uptake of xenobiotics by hepatocytes is mediated by specific proteins, including organic anion transporting polypeptides (OATPs), residing on the basolateral (sinusoidal) plasma membrane. Many of the OATPs have PDZ consensus binding sites, determined by their C-terminal 4 amino acids, while others do not. Mouse and rat OATP1A1 are associated with PDZK1, which is necessary for their trafficking to the plasma membrane.

View Article and Find Full Text PDF

The liver plays an essential role in removing endogenous and exogenous compounds from the circulation. This function is mediated by specific transporters, including members of the family of organic anion transport proteins (OATPs) and the Na-taurocholate transporting polypeptide (NTCP). In the present study, transporter protein expression was determined in liver samples from patients with cirrhosis or controls without liver disease.

View Article and Find Full Text PDF

Organic anion transport proteins (OATPs) on the basolateral surface of hepatocytes mediate uptake of a number of drugs and endogenous compounds. Previous studies showed that rat OATP1A1 (rOATP1A1) has a postsynaptic density protein, drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) consensus binding motif at its C-terminus and binds to PDZ domain containing 1 (PDZK1), which is required for its cell-surface localization. PDZK1 associates with rOATP1A1-containing endocytic vesicles within cells, mediating recruitment of motor proteins required for microtubule-based trafficking to the plasma membrane.

View Article and Find Full Text PDF

Na(+)-taurocholate cotransporting polypeptide (ntcp) mediates bile acid transport, also serving as the hepatitis B virus receptor. It traffics in vesicles along microtubules, requiring activity of protein kinase C (PKC)ζ for motility. We have now found that the epidermal growth factor receptor (EGFR) is the target of PKCζ activity and that EGFR and ntcp colocalize in vesicles.

View Article and Find Full Text PDF

Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation.

View Article and Find Full Text PDF

Organic anion transport protein 1a1 (oatp1a1), a prototypical member of the oatp family of highly homologous transport proteins, is expressed on the basolateral (sinusoidal) surface of rat hepatocytes. The organization of oatp1a1 within the plasma membrane has not been well defined, and computer-based models have predicted possible 12- as well as 10-transmembrane domain structures. Which of oatp1a1's four potential N-linked glycosylation sites are actually glycosylated and their influence on transport function have not been investigated in a mammalian system.

View Article and Find Full Text PDF

The roles of vascular binding, flow, transporters, and enzymes as determinants of the clearance of digoxin were examined in the rat liver. Digoxin is metabolized by Cyp3a and utilizes the organic anion transporting polypeptide 2 (Oatp2) and P-glycoprotein (Pgp) for influx and excretion, respectively. Uptake of digoxin was found to be similar among rat periportal (PP) and perivenous (PV) hepatocytes isolated by the digitonin-collagenase method.

View Article and Find Full Text PDF

Although many organic anion transport protein (Oatp) family members have PDZ consensus binding sites at their C termini, the functional significance is unknown. In the present study, we utilized rat Oatp1a1 (NM_017111) as a prototypical member of this family to examine the mechanism governing its subcellular trafficking. A peptide corresponding to the C-terminal 16 amino acids of rat Oatp1a1 was used to affinity-isolate interacting proteins from rat liver cytosol.

View Article and Find Full Text PDF

Transport of a series of 3H-radiolabeled C23, C24, and C27 bile acid derivatives was compared and contrasted in HeLa cell lines stably transfected with rat Na+/taurocholate cotransporting polypeptide (ntcp) or organic anion transporting polypeptide 1 (oatp1) in which expression was under regulation of a zinc-inducible promoter. Similar uptake patterns were observed for both ntcp and oatp1, except that unconjugated hyodeoxycholate was a substrate of oatp1 but not ntcp. Conjugated bile acids were transported better than nonconjugated bile acids, and the configuration of the hydroxyl groups (alpha or beta) had little influence on uptake.

View Article and Find Full Text PDF

The uptake of the sulfated bile acid sulfolithocholyltaurine (SLCT) was investigated in isolated rat hepatocytes and in HeLa cells transfected with complementary DNAs (cDNAs) of organic anion transporting polypeptides (Oatps) 1 and 2 cloned from rat liver. In hepatocytes, transport of SLCT was greatly reduced by bromosulfophthalein (BSP), estrone sulfate, the precursor bile acids cholyltaurine and lithocholyltaurine, and 4,4'-diisothiocyanostilbene-2-2'-disulfonic acid (DIDS). However, SLCT transport was insensitive to 4-methylumbelliferyl sulfate, harmol sulfate, digoxin, fexofenadine, and lack of sodium ion.

View Article and Find Full Text PDF