Publications by authors named "Pihlajaniemi T"

Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice.

View Article and Find Full Text PDF

Background: Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis.

View Article and Find Full Text PDF

Purpose: Antibodies against collagen XIII have previously been identified in patients with active thyroid-associated ophthalmopathy (TAO). Although collagen XIII expression has been described in extraocular muscles and orbital fat, its detailed localization in extraocular and thyroid tissues and the connection to autoimmunity for collagen XIII remain unclear. Our objective was to map the potential targets for these antibodies in the tissues of the orbit and thyroid.

View Article and Find Full Text PDF

The tumor extracellular matrix (ECM) critically regulates cancer progression and treatment response. Expression of the basement membrane component collagen XVIII (ColXVIII) is induced in solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII was markedly upregulated in human breast cancer (BC) and was closely associated with a poor prognosis in high-grade BCs.

View Article and Find Full Text PDF

The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation.

View Article and Find Full Text PDF

Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with a poor prognosis and few treatment options. In the most widely used experimental model for this disease, bleomycin is administered into the lungs of mice, causing a reaction of inflammation and consequent fibrosis that resembles the progression of human IPF. The inflammation and fibrosis together induce changes in gene expression that can be analyzed with reverse transcription quantitative real-time PCR (RT-qPCR), in which accurate normalization with a set of stably expressed reference genes is critical for obtaining reliable results.

View Article and Find Full Text PDF

Integrin α11β1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout ( ) mice to the DMBA/TPA skin carcinogenesis protocol.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a three-dimensional network of proteins of diverse nature, whose interactions are essential to provide tissues with the correct mechanical and biochemical cues they need for proper development and homeostasis. Changes in the quantity of extracellular matrix (ECM) components and their balance within the tumor microenvironment (TME) accompany and fuel all steps of tumor development, growth and metastasis, and a deeper and more systematic understanding of these processes is fundamental for the development of future therapeutic approaches. The wealth of "big data" from numerous sources has enabled gigantic steps forward in the comprehension of the oncogenic process, also impacting on our understanding of ECM changes in the TME.

View Article and Find Full Text PDF

Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule.

View Article and Find Full Text PDF

Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic mouse mammary carcinoma model.

View Article and Find Full Text PDF

Background: To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome.

Methods: This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM.

Results: PTM-disruptive mutations (PTM) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors.

View Article and Find Full Text PDF

Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule.

View Article and Find Full Text PDF

Collagen XIII is a conserved transmembrane collagen mainly expressed in mesenchymal tissues. Previously, we have shown that collagen XIII modulates tissue development and homeostasis. Integrins are a family of receptors that mediate signals from the environment into the cells and vice versa.

View Article and Find Full Text PDF

The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx.

View Article and Find Full Text PDF

Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer.

View Article and Find Full Text PDF

Key Points: Extracellular matrix is highly remodelled in obesity and associates with the development of metabolic disorders, such as insulin resistance. Previously, we have shown that the lack of specific collagen XVIII isoforms impairs adipocyte differentiation in mice. Here, we show that mice lacking the medium and long isoforms of collagen XVIII develop insulin resistance and glucose intolerance and show elevated serum triglycerides and fat accumulation in the liver.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis.

View Article and Find Full Text PDF

The efficient healing of skin wounds is crucial for securing the vital barrier function of the skin, but pathological wound healing and scar formation are major medical problems causing both physiological and psychological challenges for patients. A number of tightly coordinated regenerative responses, including haemostasis, the migration of various cell types into the wound, inflammation, angiogenesis, and the formation of the extracellular matrix, are involved in the healing process. In this article, we summarise the central mechanisms and processes in excessive scarring and acute wound healing, which can lead to the formation of keloids or hypertrophic scars, the two types of fibrotic scars caused by burns or other traumas resulting in significant functional or aesthetic disadvantages.

View Article and Find Full Text PDF

Osteoporosis is the most common degenerative bone disease that occurs when the balance of bone production and resorption is perturbed. Loss of bone mass or alteration in its quality leads to significant weakening of the bones and subsequently to higher fracture risk. Collagen XIII (ColXIII) is a conserved transmembrane protein expressed in many mesenchymal tissues.

View Article and Find Full Text PDF

The basement membrane (BM) is composed of various extracellular molecules and regulates tissue regeneration and maintenance. Here, we demonstrate that collagen XVIII was spatiotemporally expressed in the BM during skin wound healing in a mouse excisional wound-splinting model. Re-epithelialization was detected at days 3 and 6 post-wounding.

View Article and Find Full Text PDF

The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor's matrisome.

View Article and Find Full Text PDF

Alongside playing structural roles, the extracellular matrix (ECM) acts as an interaction platform for cellular homeostasis, organ development, and maintenance. The necessity of the ECM is highlighted by the diverse, sometimes very serious diseases that stem from defects in its components. The neuromuscular junction (NMJ) is a large peripheral motor synapse differing from its central counterparts through the ECM included at the synaptic cleft.

View Article and Find Full Text PDF