Publications by authors named "Pigeau B"

Cooling down nanomechanical force probes is a generic strategy to enhance their sensitivities through the concomitant reduction of their thermal noise and mechanical damping rates. However, heat conduction becomes less efficient at low temperatures, which renders difficult to ensure and verify their proper thermalization. Here we implement optomechanical readout techniques operating in the photon counting regime to probe the dynamics of suspended silicon carbide nanowires in a dilution refrigerator.

View Article and Find Full Text PDF

Hybrid quantum optomechanical systems interface a macroscopic mechanical degree of freedom with a single two-level system such as a single spin, a superconducting qubit or a single optical emitter. Recently, hybrid systems operating in the microwave domain have witnessed impressive progress. Concurrently, only a few experimental approaches have successfully addressed hybrid systems in the optical domain, demonstrating that macroscopic motion can modulate the two-level system transition energy.

View Article and Find Full Text PDF

Thermal motion of nanomechanical probes directly impacts their sensitivities to external forces. Its proper understanding is therefore critical for ultimate force sensing. Here, we investigate a vectorial force field sensor: a singly-clamped nanowire oscillating along two quasi-frequency-degenerate transverse directions.

View Article and Find Full Text PDF

The miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scales. It also unravels the vectorial character of the force field and how its topology impacts the measurement. Here we present an ultrasensitive method for imaging two-dimensional vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire.

View Article and Find Full Text PDF

Reminiscent of the bound character of a qubit's dynamics confined on the Bloch sphere, the observation of a Mollow triplet in the resonantly driven qubit fluorescence spectrum represents one of the founding signatures of quantum electrodynamics. Here we report on its observation in a hybrid spin-nanomechanical system, where a nitrogen-vacancy spin qubit is magnetically coupled to the vibrations of a silicon carbide nanowire. A resonant microwave field turns the originally parametric hybrid interaction into a resonant process, where acoustic phonons are now able to induce transitions between the dressed qubit states, leading to synchronized spin-oscillator dynamics.

View Article and Find Full Text PDF

A hybrid spin-oscillator system in parametric interaction is experimentally emulated using a single nitrogen vacancy (NV) spin qubit immersed in a radio frequency (rf) field and probed with a quasiresonant microwave (MW) field. We report on the MW-mediated locking of the NV spin dynamics onto the rf field, appearing when the MW-driven Rabi precession frequency approaches the rf frequency and for sufficiently large rf amplitudes. These signatures are analogous to a phononic Mollow triplet in the MW rotating frame for the parametric interaction and promise to have impact in spin-dependent force detection strategies.

View Article and Find Full Text PDF

The anharmonicity of the potential well confining a magnetic vortex core in a nanodot is measured dynamically with a magnetic resonance force microscope (MRFM). The stray field of the MRFM tip is used to displace the equilibrium core position away from the nanodot center. The anharmonicity is then inferred from the relative frequency shift induced on the eigenfrequency of the vortex core translational mode.

View Article and Find Full Text PDF

We perform a spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nanodisks coupled by the magnetodipolar interaction. We take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anticrossing and hybridization of the spin-wave modes in the pair.

View Article and Find Full Text PDF

Microwave spectroscopy of individual vortex-state magnetic nanodisks in a perpendicular bias magnetic field H is performed using a magnetic resonance force microscope. It reveals the splitting induced by H on the gyrotropic frequency of the vortex core rotation related to the existence of the two stable polarities of the core. This splitting enables spectroscopic detection of the core polarity.

View Article and Find Full Text PDF