Publications by authors named "Pifl C"

Article Synopsis
  • Midbrain dopamine neurons loss is a key feature of Parkinson's disease (PD), and the protein α-synuclein is linked to this condition but its role in neuronal vulnerability is unclear.
  • Researchers developed a new viral vector to selectively overexpress human α-synuclein in specific neuron types, particularly focusing on dopamine neurons in the substantia nigra pars compacta (SNc).
  • Increased levels of α-synuclein led to some pathological changes but surprisingly resulted in greater dopamine activity without causing neurodegeneration in these neurons over a 90-day period.
View Article and Find Full Text PDF

Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein.

View Article and Find Full Text PDF
Article Synopsis
  • The structural similarities among dopamine, norepinephrine, and serotonin transporters complicate the targeted design of individual transporter inhibitors.
  • Many chemists limit ligand development by reducing chiral centers in compounds, which hinders potential effectiveness.
  • This study highlights the benefits of increasing molecular complexity and using stereoisomers to enhance the selectivity and potency of dopamine transporter inhibitors, while also emphasizing the importance of validating these compounds in vivo.
View Article and Find Full Text PDF

Incidental Lewy body disease (ILBD) is a neuropathological diagnosis of brains with Lewy bodies without clinical neuropsychiatric symptoms. Dopaminergic deficits suggest a relationship to preclinical Parkinson's disease (PD). We now report a subregional pattern of striatal dopamine loss in ILBD cases, with dopamine found significantly decreased in the putamen (-52%) and only to a lower extent in the caudate (-38%, not statistically significant); this is similar to the pattern in idiopathic PD in various neurochemical and in vivo imaging studies.

View Article and Find Full Text PDF
Article Synopsis
  • Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are linked to issues in dopaminergic neurons, and finding effective treatments is essential due to the impact these disorders have on quality of life.
  • Genetic studies have identified GCH1 variants linked to BH4 synthesis as key contributors to these movement disorders, with BH4 deficiency leading to more severe symptoms in models.
  • Enhancing BH4 levels shows protective effects against stressors related to PD, suggesting that targeting the BH4 pathway could be a promising therapeutic approach for managing these diseases.
View Article and Find Full Text PDF

Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue.

View Article and Find Full Text PDF

The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle.

View Article and Find Full Text PDF

Rhizomelic chondrodysplasia punctata type 1 (RCDP1) is a peroxisome biogenesis disorder caused by defects in leading to impairment in plasmalogen (Pls) biosynthesis and phytanic acid (PA) oxidation. Pls deficiency is the main pathogenic factor that determines the severity of RCDP. Severe (classic) RCDP patients have negligible Pls levels, congenital cataracts, skeletal dysplasia, growth and neurodevelopmental deficits, and cerebral hypomyelination and cerebellar atrophy on brain MRI.

View Article and Find Full Text PDF

Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R.

View Article and Find Full Text PDF

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition.

View Article and Find Full Text PDF

The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K.

View Article and Find Full Text PDF

Oleh Hornykiewicz (November 17, 1926–May 26, 2020), by demonstrating the loss of dopamine neurons in Parkinson’s disease, introducing the effort to treat the disorder with L-DOPA, and other innovative research, improved the lives of countless individuals and transformed neurology and medical science. Here we celebrate the life and great achievements of an outstanding scientist.

View Article and Find Full Text PDF

Rationale: Atypical dopamine (DA) transport blockers such as modafinil and its analogs may be useful for treating motivational symptoms of depression and other disorders. Previous research has shown that the DA depleting agent tetrabenazine can reliably induce motivational deficits in rats, as evidenced by a shift towards a low-effort bias in effort-based choice tasks. This is consistent with human studies showing that people with major depression show a bias towards low-effort activities.

View Article and Find Full Text PDF

Atypical dopamine reuptake inhibitors, such as modafinil, are used for the treatment of sleeping disorders and investigated as potential therapeutics against cocaine addiction and for cognitive enhancement. Our continuous effort to find modafinil analogues with higher inhibitory activity on and selectivity toward the dopamine transporter (DAT) has previously led to the promising thiazole-containing derivatives CE-103, CE-111, CE-123, and CE-125. Here, we describe the synthesis and activity of a series of compounds based on these scaffolds, which resulted in several new selective DAT inhibitors and gave valuable insights into the structure-activity relationships.

View Article and Find Full Text PDF

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly.

View Article and Find Full Text PDF

The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ-aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post-mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38-81 years old) into about 80 tissue parts.

View Article and Find Full Text PDF

Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis.

View Article and Find Full Text PDF

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3 ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system.

View Article and Find Full Text PDF

(±)-cis-4,4'-Dimethylaminorex (4,4'-DMAR) is a new psychoactive substance (NPS) that has been associated with 31 fatalities and other adverse events in Europe between June 2013 and February 2014. We used in vitro uptake inhibition and transporter release assays to determine the effects of 4,4'-DMAR on human high-affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). In addition, we assessed its binding affinities to monoamine receptors and transporters.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive.

View Article and Find Full Text PDF

Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs).

View Article and Find Full Text PDF

In the human brain, the claustrum is a small subcortical telencephalic nucleus, situated between the insular cortex and the putamen. A plethora of neuroanatomical studies have shown the existence of dense, widespread, bidirectional and bilateral monosynaptic interconnections between the claustrum and most cortical areas. A rapidly growing body of experimental evidence points to the integrative role of claustrum in complex brain functions, from motor to cognitive.

View Article and Find Full Text PDF