Junctions between the ER and plasma membrane (PM) are implicated in calcium homeostasis, non-vesicular lipid transfer, and other cellular functions. Two ER proteins that function both as tethers to the PM via a polybasic C-terminus motif and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. We report that both proteins also form a complex with band 4.
View Article and Find Full Text PDFAs the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear.
View Article and Find Full Text PDFPhosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
Protein ubiquitination has been implicated in the regulation of axonal growth and synaptic plasticity as well as in the pathogenesis of neurodegenerative diseases. Here we show that depolarization-dependent Ca2+ influx into synaptosomes produces a global, rapid (range of seconds), and reversible decrease of the ubiquitinated state of proteins, which correlates with the Ca2+-dependent dephosphorylation of several synaptic proteins. A similar general decrease in protein ubiquitination was observed in nonneuronal cells on Ca2+ entry induced by ionomycin.
View Article and Find Full Text PDF