Publications by authors named "Pietro R Galassetti"

The purpose of this study was to develop regression equations for estimating the intensity of the exercise work rate (relative peak oxygen uptake-heart rate [%VO-HR]) and the metabolic energy expenditure (MEE) for exercise prescription and rehabilitation medicine that are specific to children. This study took into account that the specific data in terms of obesity, sex, and pubertal status are currently unavailable. Our hypothesis was that obesity would affect the submaximal exercise the oxygen uptake (VO), heart rate (HR), and metabolic energy expenditure (MEE), and exercise economy (ExEco).

View Article and Find Full Text PDF

Objectives: To determine whether stability/accuracy of post-occlusive LDF following shortened, one-minute blood flow occlusion, increases in the post-exercise state or by averaging multiple measurements.

Methods: Six healthy adults (3F) underwent LDF eight times at rest and following exercise, assessing post-occlusive (one-minute occlusion) reactive hyperemia in the cutaneous microcirculation of the forefinger. Measured variables included: pre- and post-occlusion steady-state perfusion (Plat1, Plat2), maximum post-occlusive perfusion (Max), PkT, and the ratio Max/Plat1.

View Article and Find Full Text PDF

Atherosclerosis/cardiovascular disease are major causes of morbidity/mortality in obesity and type 2 diabetes (T2D), and have been associated with activation of innate immune cells, their diapedesis to the arterial intima and formation of the atherosclerotic plaque. While in obesity/T2D immune cell activation likely depends on dysregulated metabolism, the interaction between individual metabolic factors typical of these conditions (hyperglycemia, hyperlipidemia), innate immune cell activation, and the progression of atherosclerosis remains unclear. We, therefore, measured by flow cytometry cell surface expression of CD11b, CD14, CD16, CD62L, and CD66b, known markers of granulocyte (Gc) and monocyte (Mc) activation, in five healthy, five obese, and five T2D subjects, during 4-h i.

View Article and Find Full Text PDF

There is ample research to support the potential benefits of a high protein diet on clinical outcomes in overweight/obese, diabetic subjects. However, nutritional management of overweight/obese individuals with heart failure (HF) and type 2 diabetes mellitus (DM) or metabolic syndrome (MS) is poorly understood and few clinical guidelines related to nutritional approaches exist for this subgroup. This article describes the design, methods, and baseline characteristics of study participants enrolled in Pro-HEART, a randomized clinical trial to determine the short term and long term effects of a high protein diet (30% protein [~110 g/day], 40% carbohydrates [150 g/day], 30% fat [~50 g/day]) versus a standard protein diet (15% protein [~55 g/day], 55% carbohydrates [~200 g/day], 30% fat [~50 g/day]) on body weight and adiposity, cardiac structure and function, functional status, lipid profile, glycemic control, and quality of life.

View Article and Find Full Text PDF

Introduction: Cardiovascular complications are the leading cause of mortality in type 2 diabetes (T2DM), in which onset and progression of atherosclerosis is linked to chronic inflammation. Activation status of innate immune cells (granulocytes [Gc], monocytes [Mc]), as reflected by increased CD11b, CD66b, and other surface markers, increases their endothelial and cytokines/chemokines release. Whereas this inflammatory activation seems inversely related to poor glycemic control, the effect of acute spontaneous hyperglycemia on innate immune cell activation remains unclear.

View Article and Find Full Text PDF

Diet plays an important role in modulating exercise responses, including activation of the growth hormone (GH)/insulin-like growth factor-I (IGF-1) axis. Obesity and fat ingestion were separately shown to reduce exercise GH responses, but their combined effect, especially important in children, has not been studied. We therefore measured the GH response to exercise [30-min intermittent cycling, ten 2-min bouts at ~80% maximal aerobic capacity (Vo(2max)), separated by 1-min rest], started 45 min after ingestion of a high-fat meal (HFM) in 16 healthy [controls; body mass index percentile (BMI%ile) 51 ± 7], and 19 obese (Ob, BMI%ile 97 ± 0.

View Article and Find Full Text PDF

Various compounds in present human breath have long been loosely associated with pathological states (including acetone smell in uncontrolled diabetes). Only recently, however, the precise measurement of exhaled volatile organic compounds (VOCs) and aerosolized particles was made possible at extremely low concentrations by advances in several analytical methodologies, described in detail in the international literature and each suitable for specific subsets of exhaled compounds. Exhaled gases may be generated endogenously (in the pulmonary tract, blood, or peripheral tissues), as metabolic by-products of human cells or colonizing micro-organisms, or may be inhaled as atmospheric pollutants; growing evidence indicates that several of these molecules have distinct cell-to-cell signaling functions.

View Article and Find Full Text PDF

Background: Although altered metabolism has long been known to affect human breath, generating clinically usable metabolic tests from exhaled compounds has proven challenging. If developed, a breath-based lipid test would greatly simplify management of diabetes and serious pathological conditions (e.g.

View Article and Find Full Text PDF

Objective: Modulation of inflammatory status is considered a key component of the overall health effects of exercise. This may be especially relevant in children with obesity (Ob) or type 1 diabetes (T1DM), in which an imbalance between pro- and anti-inflammatory mediators could accelerate onset and progression of cardiovascular complications. To date, exercise-induced alterations in immuno-modulatory mediators in Ob and T1DM children remain largely unknown.

View Article and Find Full Text PDF

Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients.

View Article and Find Full Text PDF

Obesity (Ob) and type 1 diabetes (T1DM) are associated with increased inflammation and oxidative stress, which are major pathogenetic pathways toward higher cardiovascular risks. Although long-term exercise protects against systemic inflammation and oxidation, acute exercise actually exerts pro-inflammatory and oxidative effects, prompting the necessity for better defining these molecular processes in at-risk patients; in particular, very little is known regarding obese and T1DM children. We therefore examined key inflammatory and oxidative stress variables during exercise in 138 peripubertal children (47 Ob, 12.

View Article and Find Full Text PDF

Objective: Pediatric obesity, a major risk factor for cardiovascular diseases and diabetes, has steadily increased in the last decades. Although excessive inflammation and oxidation are possible biochemical links between obesity and cardiovascular events in adults, little information is available in children. Furthermore, effects of gender and fitness on the interaction between dyslipidemia and oxidative/inflammatory stress in children are mostly unknown.

View Article and Find Full Text PDF

Poor glycemic control in Type 1 diabetes (T1DM) causes long-term cardiovascular complications, at least in part via chronic, low-grade inflammation associated with recurrent hyperglycemia. While physical activity can reduce both inflammation and cardiovascular risks, the underlying molecular mechanisms remain unclear. This is particularly important for T1DM children, for whom the prevention of long-term cardiovascular complications must include optimization of exercise-related anti-inflammatory strategies.

View Article and Find Full Text PDF

Background: Abnormal systemic concentrations of proinflammatory cytokines/chemokines have been implicated in the development of long-term cardiovascular complications in type 1 diabetes (T1DM) and obesity. Whether leukocyte white blood cell (WBC) gene expression of these proinflammatory mediators contributes to their increased systemic levels, however, remains unclear, especially in the pediatric patient populations. This study examines mRNA changes of 9 cytokines and chemokines in WBCs following ex vivo immunostimulation from 9 T1DM (13.

View Article and Find Full Text PDF

In children, exercise modulates systemic anabolism, muscle growth, and overall physiological development through the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis. GH secretion, at rest and during exercise, changes with age and maturational status and can be blunted by hyperlipidemia and obesity, with possible negative effects on physiological growth. However, little is known about the effect of progressively more severe pediatric obesity on the GH response to exercise and its relationship to pubertal status.

View Article and Find Full Text PDF

Exhaled volatile organic compounds (VOCs) represent ideal biomarkers of endogenous metabolism and could be used to noninvasively measure circulating variables, including plasma glucose. We previously demonstrated that hyperglycemia in different metabolic settings (glucose ingestion in pediatric Type 1 diabetes) is paralleled by changes in exhaled ethanol, acetone, and methyl nitrate. In this study we integrated these gas changes along with three additional VOCs (2 forms of xylene and ethylbenzene) into multi-linear regression models to predict plasma glucose profiles in 10 healthy young adults, during the 2 h following an intravenous glucose bolus (matched samples of blood, exhaled and room air were collected at 12 separate time points).

View Article and Find Full Text PDF

Leukocytosis contributes to exercise-induced immune modulation, which is a mechanism of cardiovascular protection. However, this process is poorly defined in children. We therefore measured leukocytes in 45 healthy, 18 overweight, 16 type 1 diabetic, and 8 asthmatic children at pre, end-, and 30-min postexercise (30-min intermittent or 6-min continuous).

View Article and Find Full Text PDF

sCD40L is a proatherogenic cytokine, part of the tumor necrosis factor (TNF) superfamily and consistently associated with obesity, diabetes, and increased cardiovascular risk. Although the role of sCD40L in the onset/progression of cardiovascular complications of dysmetabolic diseases may be modulated by acute and/or chronic fluctuations of plasma insulin and glucose, very little has been done to clarify this interaction. The kinetic profile of sCD40L (and, in an exploratory manner, of several immunomodulatory factors), were measured during hyperglycemia and euglycemic-hyperinsulinemia in a group of 10 healthy young males (26.

View Article and Find Full Text PDF

Common complications of type 2 diabetes (T2D) are eye, kidney and nerve diseases, as well as an increased risk for the development of cardiovascular disease and cancer. The overwhelming influence of these conditions contributes to a decreased quality of life and life span, as well as significant economic consequences. Although obesity once served as a surrogate marker for the risk of T2D, we know now that excess adipose tissue secretes inflammatory cytokines that left unchecked, accelerate the progression to insulin resistance and T2D.

View Article and Find Full Text PDF

Background: Leukocyte mobilization and secretions of cytokines, chemokines, and growth factors in children during exercise are necessary biochemical signals for physiological growth and long-term cardiovascular protection. Because of glycemic instability, altered exercise responses, particularly the proinflammatory cytokine interleukin (IL)-6, may occur in type 1 diabetes mellitus (T1DM) that could influence the onset/progression of diabetic vascular complications. Relatively little is known, however, on most molecular aspects of immunomodulatory adaptation to exercise in diabetic children.

View Article and Find Full Text PDF

While acute changes in systemic pro-/antiinflammatory cytokines occur with exercise, individual kinetics during and following exercise remain unclear; particularly, information is scarce regarding children. This study investigated the exercise-induced kinetic profiles of major pro-/anti-inflammatory mediators in 21 healthy children (13.9 +/- 0.

View Article and Find Full Text PDF

Objective: An imbalance of pro-/anti-inflammatory cytokines may accelerate diabetic vascular complications and interfere with proper wound healing. Currently, limited available literature suggests that plasma concentrations of certain pro- and anti-inflammatory cytokines may be altered during hyperglycemia/diabetes mellitus. It is still unclear, however, whether these concepts also apply to children with diabetes, and whether alterations in circulating cytokine levels are a permanent feature of diabetes or an acute effect of fluctuating glucose concentrations.

View Article and Find Full Text PDF

In children with type 1 diabetes (T1DM), altered adaptive responses to exercise (secretion of growth factors, inflammatory cytokines, and glucoregulatory mediators) may have potential implications in growth and development, early onset of disease complications, and incidence of hypoglycemia. We therefore measured a broad spectrum of exercise responses in 12 children with T1DM (seven males and five females) and 12 controls (six males / six females) aged 11-15 yr, during a 30-min exercise challenge @ 80% VO(2)max. Euglycemia was strictly controlled during exercise, and in diabetic patients a basal rate of i.

View Article and Find Full Text PDF