Multimodal datasets are ubiquitous in modern applications, and multimodal Variational Autoencoders are a popular family of models that aim to learn a joint representation of different modalities. However, existing approaches suffer from a coherence-quality tradeoff in which models with good generation quality lack generative coherence across modalities and vice versa. In this paper, we discuss the limitations underlying the unsatisfactory performance of existing methods in order to motivate the need for a different approach.
View Article and Find Full Text PDFScore-based diffusion models are a class of generative models whose dynamics is described by stochastic differential equations that map noise into data. While recent works have started to lay down a theoretical foundation for these models, a detailed understanding of the role of the diffusion time is still lacking. Current best practice advocates for a large to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution; however, a smaller value of should be preferred for a better approximation of the score-matching objective and higher computational efficiency.
View Article and Find Full Text PDFStochastic gradient sg-based algorithms for Markov chain Monte Carlo sampling (sgmcmc) tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise on sgsteps. The sampling properties of these algorithms are determined by user choices, such as the covariance of the injected noise and the learning rate, and by problem-specific factors, such as assumptions on the loss landscape and the covariance of sg noise. However, current sgmcmc algorithms applied to popular complex models such as Deep Nets cannot simultaneously satisfy the assumptions on loss landscapes and on the behavior of the covariance of the sg noise, while operating with the practical requirement of non-vanishing learning rates.
View Article and Find Full Text PDF