Publications by authors named "Pietro Forte"

Objectives: The main aim of this exploratory study was to evaluate functional activity of antibodies elicited by a maternal Group B Streptococcus (GBS) investigational vaccine composed of capsular polysaccharides Ia, Ib, and III conjugated to genetically detoxified Diphtheria toxin CRM. The second objective was to investigate the relationship between serotype-specific IgG concentrations and functional activity in maternal and cord sera.

Methods: Maternal and cord sera collected at baseline and at delivery from vaccine and placebo recipients during a double-blind placebo-controlled Phase II study (www.

View Article and Find Full Text PDF

Objective: To evaluate the safety and immunogenicity of an investigational trivalent group B streptococcal vaccine in pregnant women and antibody transfer to their newborns.

Methods: The primary outcome of this observer-blind, randomized study was to estimate placental antibody transfer rates at birth. Secondary outcomes included measurement of serotype-specific antibodies at screening, 30 days postvaccination, at delivery, and 91 days postpartum, infant antibody levels at 3 months of age, the potential effect on routine infant diphtheria vaccination at 1 month after the third infant series dose, and safety in mother and infant participants through at least 5 months postpartum.

View Article and Find Full Text PDF

Background: Human natural killer (NK) cell-mediated cytotoxicity represents a hurdle in pig-to-human xenotransplantation. It was previously reported that the expression of human major histocompatibility complex class I molecules, including HLA-B27, -Cw3, -E, and -G, partially protects porcine endothelial cells (pEC) from human NK-mediated cytotoxicity and that HLA-G inhibits NK adhesion to pEC. Here, we tested if HLA-Cw4 expression on pEC alone, or concurrently with HLA-Cw3, prevents human NK adhesion and cytotoxicity against pEC via recognition of the killer-cell immunoglobulin-like receptors (KIR) CD158a (KIR2DL1) and CD158b (KIR2DL2/3), respectively.

View Article and Find Full Text PDF

Background: The susceptibility of porcine endothelial cells (pEC) to human natural killer (NK) cells is related to the failure of human major histocompatibility complex (MHC)-specific killer inhibitory receptors to recognize porcine MHC class I molecules. The aims of this study were (i) to assess the protection of pEC against xenogeneic NK-mediated cytotoxicity afforded by the stable expression of HLA-E single chain trimers (SCT) composed of a canonical HLA-E binding peptide antigen, VMAPRTLIL, the mature human beta2-microglobulin, and the mature HLA-E heavy chain, and (ii) to test whether HLA-E expression on pEC and porcine lymphoblastoid cells affects the adhesion of human NK cells.

Methods: Porcine EC lines expressing different levels of HLA-E SCT were generated by Ca(2)PO(4)-transfection followed by limiting dilution cloning.

View Article and Find Full Text PDF

Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC).

View Article and Find Full Text PDF

Human NK cells lyse porcine cells and may play an important role in the cell-mediated rejection of pig-to-human xenografts. Lysis is probably a consequence of the failure of human MHC-specific killer inhibitory receptors to recognize porcine MHC class I molecules. A majority of activated human NK cells express the HLA-E-specific inhibitory receptor CD94/NKG2A.

View Article and Find Full Text PDF

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC).

View Article and Find Full Text PDF

Because of organ shortages in clinical allotransplantation, the potential of pig-to-human xenotransplantation is currently being explored showing a possible critical role for natural killer (NK) cells in the immune response against xenografts. Therefore, we analyzed the cytotoxic pathways utilized by human natural killer cells (hNK) against porcine endothelial cells (pEC). Transmission electron microscopy of pEC cocultured with hNK cells showed both apoptotic and necrotic cell death, whereas soluble factors such as Fas ligand or TNFalpha did not induce apoptosis in pEC.

View Article and Find Full Text PDF

CD26 is a type II transmembrane glycoprotein with dipeptidyl peptidase (DPPIV) activity, constitutively expressed in different cell types and contributing to T-cell activation by acting as costimulatory molecule. Although data suggest an important role for CD26 within the immune system, the physiologic function of this molecule is still unknown. To investigate the role of CD26 in vivo we have produced transgenic mice expressing the human molecule in T cells.

View Article and Find Full Text PDF