Publications by authors named "Pietro Fiorentin"

Recent research highlights advancements in collecting Artificial Light at Night (ALAN) data using radiosondes on stratospheric balloons, revealing a need for enhanced in-flight image stabilization. This paper proposes a twofold approach: Firstly, it introduces a design concept for a high-resolution image acquisition and stabilization system for aerial instruments (e.g.

View Article and Find Full Text PDF

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard Terra and Aqua satellites provides measurements of several atmospheric parameters. This paper focuses on the cloud fraction data representing the number of cloudy pixels divided by the total number of pixels, and available through 1° x 1° grids spatial resolution with daily or monthly temporal resolution. The aim of the study is to propose a novel method called The Spatial-Temporal Implementation Algorithm (STIA) for analysing satellite daily 1° x 1°grid cloud fraction average values for•Comparing two datasets retrieved by MODIS aboard Aqua and Terra satellites to obtain information on the cloud formation in the afternoon and morning, respectively, thus enhancing the temporal resolution.

View Article and Find Full Text PDF

Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers.

View Article and Find Full Text PDF

Sky Quality Meter (SQM) is a commercial instrument based on photometers widely used by amateur astronomers for skyglow measurement from the ground. In the framework of the MINLU project, two SQM-LE units were integrated in an autonomous sensor suite realized and tested at University of Padova for monitoring light pollution from drones or sounding balloons. During the ground tests campaign before airborne measurement, the performance of both SQM units was verified in laboratory using controlled light sources as a reference input; the results showed that both units presented an angular response deviating consistently from the expected performance and that the sensors' field of view was larger than the one declared in the manufacturer's datasheet.

View Article and Find Full Text PDF

The paper presents the calibration activity on the imaging system of the MINLU instrument, an autonomous sensor suite designed for monitoring light pollution using commercial off-the-shelf components. The system is extremely compact and with an overall mass below 3 kg can be easily installed as a payload for drones or sounding balloons. Drones and air balloons can in fact play an important role in completing upward light emission measurement from satellites allowing an increased spatial and time resolution from convenient altitudes and positions.

View Article and Find Full Text PDF